0 /*********************************************************************

1 * Filename: sha256.c

2 * Author: Brad Conte (brad AT bradconte.com)

3 * Copyright:

4 * Disclaimer: This code is presented "as is" without any guarantees.

5 * Details: Implementation of the SHA-256 hashing algorithm.

6 SHA-256 is one of the three algorithms in the SHA2

7 specification. The others, SHA-384 and SHA-512, are not

8 offered in this implementation.

9 Algorithm specification can be found here:

10 * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

11 This implementation uses little endian byte order.

12 *********************************************************************/

13

14 /*************************** HEADER FILES ***************************/

15 #include <stdlib.h>

16 #include <memory.h>

17

18 #define SHA256_BLOCK_SIZE 32

19 typedef unsigned char BYTE;

20 typedef unsigned int WORD;

21

22 typedef struct {

23 BYTE data[64];

24 WORD datalen;

25 unsigned long long bitlen;

26 WORD state[8];

27 } _SHA256_CTX;

28

29 /****************************** MACROS ******************************/

30 #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))

31 #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))

32

33 #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))

34 #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

35 #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))

36 #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))

37 #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))

38 #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))

39

40 /**************************** VARIABLES *****************************/

41 static const WORD k[64] = {

42 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,

43 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,

44 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,

45 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,

46 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,

47 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,

48 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,

49 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2

50 };

51

52 /*********************** FUNCTION DEFINITIONS ***********************/

53 void sha256_transform(_SHA256_CTX *ctx, const BYTE data[])

54 {

55 WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];

56

57 for (i = 0, j = 0; i < 16; ++i, j += 4)

58 m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);

59 for ( ; i < 64; ++i)

60 m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];

61

62 a = ctx->state[0];

63 b = ctx->state[1];

64 c = ctx->state[2];

65 d = ctx->state[3];

66 e = ctx->state[4];

67 f = ctx->state[5];

68 g = ctx->state[6];

69 h = ctx->state[7];

70

71 for (i = 0; i < 64; ++i) {

72 t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];

73 t2 = EP0(a) + MAJ(a,b,c);

74 h = g;

75 g = f;

76 f = e;

77 e = d + t1;

78 d = c;

79 c = b;

80 b = a;

81 a = t1 + t2;

82 }

83

84 ctx->state[0] += a;

85 ctx->state[1] += b;

86 ctx->state[2] += c;

87 ctx->state[3] += d;

88 ctx->state[4] += e;

89 ctx->state[5] += f;

90 ctx->state[6] += g;

91 ctx->state[7] += h;

92 }

93

94 void sha256_init(_SHA256_CTX *ctx)

95 {

96 ctx->datalen = 0;

97 ctx->bitlen = 0;

98 ctx->state[0] = 0x6a09e667;

99 ctx->state[1] = 0xbb67ae85;

100 ctx->state[2] = 0x3c6ef372;

101 ctx->state[3] = 0xa54ff53a;

102 ctx->state[4] = 0x510e527f;

103 ctx->state[5] = 0x9b05688c;

104 ctx->state[6] = 0x1f83d9ab;

105 ctx->state[7] = 0x5be0cd19;

106 }

107

108 void sha256_update(_SHA256_CTX *ctx, const BYTE data[], size_t len)

109 {

110 WORD i;

111

112 for (i = 0; i < len; ++i) {

113 ctx->data[ctx->datalen] = data[i];

114 ctx->datalen++;

115 if (ctx->datalen == 64) {

116 sha256_transform(ctx, ctx->data);

117 ctx->bitlen += 512;

118 ctx->datalen = 0;

119 }

120 }

121 }

122

123 void sha256_final(_SHA256_CTX *ctx, BYTE hash[])

124 {

125 WORD i;

126

127 i = ctx->datalen;

128

129 // Pad whatever data is left in the buffer.

130 if (ctx->datalen < 56) {

131 ctx->data[i++] = 0x80;

132 while (i < 56)

133 ctx->data[i++] = 0x00;

134 }

135 else {

136 ctx->data[i++] = 0x80;

137 while (i < 64)

138 ctx->data[i++] = 0x00;

139 sha256_transform(ctx, ctx->data);

140 memset(ctx->data, 0, 56);

141 }

142

143 // Append to the padding the total message's length in bits and transform.

144 ctx->bitlen += ctx->datalen * 8;

145 ctx->data[63] = ctx->bitlen;

146 ctx->data[62] = ctx->bitlen >> 8;

147 ctx->data[61] = ctx->bitlen >> 16;

148 ctx->data[60] = ctx->bitlen >> 24;

149 ctx->data[59] = ctx->bitlen >> 32;

150 ctx->data[58] = ctx->bitlen >> 40;

151 ctx->data[57] = ctx->bitlen >> 48;

152 ctx->data[56] = ctx->bitlen >> 56;

153 sha256_transform(ctx, ctx->data);

154

155 // Since this implementation uses little endian byte ordering and SHA uses big endian,

156 // reverse all the bytes when copying the final state to the output hash.

157 for (i = 0; i < 4; ++i) {

158 hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;

159 hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;

160 hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;

161 hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;

162 hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;

163 hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;

164 hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;

165 hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;

166 }

167 }

168

169 unsigned char *sha256(const unsigned char *d, size_t n, unsigned char *md)

170 {

171 _SHA256_CTX c;

172 static unsigned char m[SHA256_BLOCK_SIZE];

173

174 if (md == NULL) md = m;

175 sha256_init(&c);

176 sha256_update(&c,d,n);

177 sha256_final(&c, md);

178 explicit_bzero(&c,sizeof(c));

179 return(md);

180 }

181