Back to module index

Go to module by name

cryptography.hazmat.primitives.asymmetric

cryptography.hazmat.primitives

cryptography.hazmat

cryptography

cryptography.hazmat.primitives.asymmetric.rsa

This module has no docstring.

Classes

AsymmetricPadding

name = <abc.abstractproperty object at 0x7f92bf0d0d00>

          A string naming this padding (e.g. "PSS", "PKCS1").
        

AsymmetricSignatureContext

finalize(self) -> bytes


          Returns the signature as bytes.
        
update(self, data: bytes) -> None


          Processes the provided bytes and returns nothing.
        

AsymmetricVerificationContext

update(self, data: bytes) -> None


          Processes the provided bytes and returns nothing.
        
verify(self) -> None


          Raises an exception if the bytes provided to update do not match the
          signature or the signature does not match the public key.
        

RSAPrivateKey

decrypt(self, ciphertext: bytes, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding) -> bytes


          Decrypts the provided ciphertext.
        
private_bytes(self, encoding: cryptography.hazmat.primitives._serialization.Encoding, format: cryptography.hazmat.primitives._serialization.PrivateFormat, encryption_algorithm: cryptography.hazmat.primitives._serialization.KeySerializationEncryption) -> bytes


          Returns the key serialized as bytes.
        
private_numbers(self) -> 'RSAPrivateNumbers'


          Returns an RSAPrivateNumbers.
        
public_key(self) -> 'RSAPublicKey'


          The RSAPublicKey associated with this private key.
        
sign(self, data: bytes, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding, algorithm: Union[cryptography.hazmat.primitives.asymmetric.utils.Prehashed, cryptography.hazmat.primitives.hashes.HashAlgorithm]) -> bytes


          Signs the data.
        
signer(self, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding, algorithm: cryptography.hazmat.primitives.hashes.HashAlgorithm) -> cryptography.hazmat.primitives.asymmetric.AsymmetricSignatureContext


          Returns an AsymmetricSignatureContext used for signing data.
        
key_size = <abc.abstractproperty object at 0x7f92bf0d0d60>

          The bit length of the public modulus.
        

RSAPrivateKey

decrypt(self, ciphertext: bytes, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding) -> bytes


          Decrypts the provided ciphertext.
        
private_bytes(self, encoding: cryptography.hazmat.primitives._serialization.Encoding, format: cryptography.hazmat.primitives._serialization.PrivateFormat, encryption_algorithm: cryptography.hazmat.primitives._serialization.KeySerializationEncryption) -> bytes


          Returns the key serialized as bytes.
        
private_numbers(self) -> 'RSAPrivateNumbers'


          Returns an RSAPrivateNumbers.
        
public_key(self) -> 'RSAPublicKey'


          The RSAPublicKey associated with this private key.
        
sign(self, data: bytes, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding, algorithm: Union[cryptography.hazmat.primitives.asymmetric.utils.Prehashed, cryptography.hazmat.primitives.hashes.HashAlgorithm]) -> bytes


          Signs the data.
        
signer(self, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding, algorithm: cryptography.hazmat.primitives.hashes.HashAlgorithm) -> cryptography.hazmat.primitives.asymmetric.AsymmetricSignatureContext


          Returns an AsymmetricSignatureContext used for signing data.
        
key_size = <abc.abstractproperty object at 0x7f92bf0d0d60>

          The bit length of the public modulus.
        

RSAPrivateNumbers

private_key(self, backend: Any = None) -> cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey
d = <property object at 0x7f92bf0e38b0>
dmp1 = <property object at 0x7f92bf0e3900>
dmq1 = <property object at 0x7f92bf0e3950>
iqmp = <property object at 0x7f92bf0e39a0>
p = <property object at 0x7f92bf0e3630>
public_numbers = <property object at 0x7f92bf0e39f0>
q = <property object at 0x7f92bf0e3720>

RSAPublicKey

encrypt(self, plaintext: bytes, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding) -> bytes


          Encrypts the given plaintext.
        
public_bytes(self, encoding: cryptography.hazmat.primitives._serialization.Encoding, format: cryptography.hazmat.primitives._serialization.PublicFormat) -> bytes


          Returns the key serialized as bytes.
        
public_numbers(self) -> 'RSAPublicNumbers'


          Returns an RSAPublicNumbers
        
recover_data_from_signature(self, signature: bytes, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding, algorithm: Optional[cryptography.hazmat.primitives.hashes.HashAlgorithm]) -> bytes


          Recovers the original data from the signature.
        
verifier(self, signature: bytes, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding, algorithm: cryptography.hazmat.primitives.hashes.HashAlgorithm) -> cryptography.hazmat.primitives.asymmetric.AsymmetricVerificationContext


          Returns an AsymmetricVerificationContext used for verifying signatures.
        
verify(self, signature: bytes, data: bytes, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding, algorithm: Union[cryptography.hazmat.primitives.asymmetric.utils.Prehashed, cryptography.hazmat.primitives.hashes.HashAlgorithm]) -> None


          Verifies the signature of the data.
        
key_size = <abc.abstractproperty object at 0x7f92bf0d0dc0>

          The bit length of the public modulus.
        

RSAPublicKey

encrypt(self, plaintext: bytes, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding) -> bytes


          Encrypts the given plaintext.
        
public_bytes(self, encoding: cryptography.hazmat.primitives._serialization.Encoding, format: cryptography.hazmat.primitives._serialization.PublicFormat) -> bytes


          Returns the key serialized as bytes.
        
public_numbers(self) -> 'RSAPublicNumbers'


          Returns an RSAPublicNumbers
        
recover_data_from_signature(self, signature: bytes, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding, algorithm: Optional[cryptography.hazmat.primitives.hashes.HashAlgorithm]) -> bytes


          Recovers the original data from the signature.
        
verifier(self, signature: bytes, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding, algorithm: cryptography.hazmat.primitives.hashes.HashAlgorithm) -> cryptography.hazmat.primitives.asymmetric.AsymmetricVerificationContext


          Returns an AsymmetricVerificationContext used for verifying signatures.
        
verify(self, signature: bytes, data: bytes, padding: cryptography.hazmat.primitives._asymmetric.AsymmetricPadding, algorithm: Union[cryptography.hazmat.primitives.asymmetric.utils.Prehashed, cryptography.hazmat.primitives.hashes.HashAlgorithm]) -> None


          Verifies the signature of the data.
        
key_size = <abc.abstractproperty object at 0x7f92bf0d0dc0>

          The bit length of the public modulus.
        

RSAPublicNumbers

public_key(self, backend: Any = None) -> cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey
e = <property object at 0x7f92bf0e3a90>
n = <property object at 0x7f92bf0e3ae0>

Functions

gcd

gcd(*integers)

  Greatest Common Divisor.

generate_private_key

generate_private_key(public_exponent: int, key_size: int, backend: Any = None) -> cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey

rsa_crt_dmp1

rsa_crt_dmp1(private_exponent: int, p: int) -> int


      Compute the CRT private_exponent % (p - 1) value from the RSA
      private_exponent (d) and p.
    

rsa_crt_dmq1

rsa_crt_dmq1(private_exponent: int, q: int) -> int


      Compute the CRT private_exponent % (q - 1) value from the RSA
      private_exponent (d) and q.
    

rsa_crt_iqmp

rsa_crt_iqmp(p: int, q: int) -> int


      Compute the CRT (q ** -1) % p value from RSA primes p and q.
    

rsa_recover_prime_factors

rsa_recover_prime_factors(n: int, e: int, d: int) -> Tuple[int, int]


      Compute factors p and q from the private exponent d. We assume that n has
      no more than two factors. This function is adapted from code in PyCrypto.
    

Modules

abc

asym_utils

hashes

typing