đŸ Archived View for schinkel.bevuta.com âș rants âș qc-as-a-field-is-bs.txt captured on 2024-12-17 at 10:29:26.
âŹ ïž Previous capture (2023-11-04)
-=-=-=-=-=-=-
[https://scottlocklin.wordpress.com/2019/01/15/quantum-computing-as-a-field-is-obvious-bullshit/] Quantum computing as a field is obvious bullshit Posted in non-standard computer architectures, physics by Scott Locklin on January 15, 2019 I remember spotting the quantum computing trend when I was a larval physics nerdling. I figured maybe I could get in on the chuckwagon if my dissertation project didnât work out in a big way (it didnât). I managed to get myself invited to a Gordon conference, and have giant leather bound notebooks filled with theoretical scribblings containing material for 2-3 papers in them. I wasnât real confident in my results, and I couldnât figure out a way to turn them into something practical involving matter, so I happily matriculated to better things in the world of business. When I say Quantum Computing is a bullshit field, I donât mean everything in the field is bullshit, though to first order, this appears to be approximately true. I donât have a mathematical proof that Quantum Computing isnât at least theoretically possible. I also do not have a mathematical proof that we can make the artificial bacteria of K. Eric Drexlerâs nanotech fantasies. Yet, I know both fields are bullshit. Both fields involve forming new kinds of matter that we havenât the slightest idea how to construct. Neither field has a sane âfirst stepâ to make their large claims true. Drexler and the ânanotechnologistsâ who followed him, they assume because we know about the Schroedinger equation we can make artificial forms of life out of arbitrary forms of matter. This is nonsense; nobody understands enough about matter in detail or life in particular to do this. There are also reasonable thermodynamic, chemical and physical arguments against this sort of thing. I have opined on this at length, and at this point, I am so obviously correct on the nanotech front, there is nobody left to argue with me. A generation of people who probably would have made first rate chemists or materials scientists wasted their early, creative careers following this over hyped and completely worthless woo. Billions of dollars squandered down a rat hole of rubbish and wishful thinking. Legal wankers wrote legal reviews of regulatory regimes to protect us from this nonexistent technology. We even had congressional hearings on this nonsense topic back in 2003 and again in 2005 (and probably some other times I forgot about). Russians built a nanotech park to cash in on the nanopocalyptic trillion dollar nanotech economy which was supposed to happen by now. Similarly, âquantum computingâ enthusiasts expect you to overlook the fact that they havenât a clue as to how to build and manipulate quantum coherent forms of matter necessary to achieve quantum computation. A quantum computer capable of truly factoring the number 21 is missing in action. In fact, the factoring of the number 15 into 3 and 5 is a bit of a parlour trick, as they design the experiment while knowing the answer, thus leaving out the gates required if we didnât know how to factor 15. The actual number of gates needed to factor a n-bit number is 72 * n^3; so for 15, itâs 4 bits, 4608 gates; not happening any time soon. Itâs been almost 25 years since Peter Shor had his big idea, and we are no closer to factoring large numbers than we were ⊠15 years ago when we were also able to kinda sorta vaguely factor the number 15 using NMR âquantum computers.â I had this conversation talking with a pal at ⊠a nice restaurant near one of Americaâs great centers of learning. Our waiter was amazed and shared with us the fact that he had done a Ph.D. thesis on the subject of quantum computing. My pal was convinced by this that my skepticism is justified; in fact he accused me of arranging this. I didnât, but am motivated to write to prevent future Ivy League Ph.D. level talent having to make a living by bringing a couple of finance nerds their steaks. In 2010, I laid out an argument against quantum computing as a field based on the fact that no observable progress has taken place. That argument still stands. No observable progress has taken place. However, 8 years is a very long time. Ph.D. dissertations have been achieved, and many of these people have gone on to careers ⊠some of which involve bringing people like me delicious steaks. Hundreds of quantum computing charlatans achieved tenure in that period of time. According to google scholar a half million papers have been written on the subject since then. There are now three major .com firms funding quantum computing efforts; IBM, Google and Microsoft. There is at least one YC/Andreesen backed startup I know of. Of course there is also dwave, who has somehow managed to exist since 1999; almost 20 years, without actually delivering something usefully quantum or computing. How many millions have been flushed down the toilet by these turds? How many millions which could have been used building, say, ordinary analog or stochastic computers which do useful things? None of these have delivered a useful quantum computer which has even one usefully error corrected qubit. I suppose I shed not too many tears for the money spent on these efforts; in my ideal world, several companies on that list would be broken up or forced to fund Bell Labs moonshot efforts anyway, and most venture capitalists are frauds who deserve to be parted with their money. I do feel sad for the number of young people taken in by this quackery. Youâre better off reading ancient Greek than studying a âtechnicalâ subject that eventually involves bringing a public school kid like me a steak. Hell, you are better off training to become an exorcist or a feng shui practitioner than getting a Ph.D. in âquantum computing.â I am an empiricist and a phenomenologist. I consider the lack of one error corrected qubit in the history of the human race to be adequate evidence that this is not a serious enough field to justify using the word âfield.â Most of it is frankly, a scam. Plenty of time to collect tenure and accolades before people realize this isnât normative science or much of anything reasonable. As I said last year All you need do is look at history: people had working (digital) computers before Von Neumann and other theorists ever noticed them. We literally have thousands of âengineersâ and âscientistsâ writing software and doing âresearchâ on a machine that nobody knows how to build. People dedicate their careers to a subject which doesnât exist in the corporeal world. There isnât a word for this type of intellectual flatulence other than the overloaded term âfraud,â but there should be. âComputer scientistsâ have gotten involved in this chuckwagon. They have added approximately nothing to our knowledge of the subject, and as far as I can tell, their educational backgrounds preclude them ever doing so. âComputer scientistsâ havenât had proper didactics in learning quantum mechanics, and virtually none of them have ever done anything as practical as fiddled with an op-amp, built an AM radio or noticed how noise works in the corporeal world. Such towering sperg-lords actually think that the only problems with quantum computing are engineering problems. When I read things like this, I can hear them muttering mere engineering problems. Letâs say, for the sake of argument this were true. The SR-71 was technically a mere engineering problem after the Bernoulli effect was explicated in 1738. Would it be reasonable to have a hundred or a thousand people writing flight plans for the SR-71  as a profession in 1760? No. A reasonable thing for a 1760s scientist to do is invent materials making a heavier than air craft possible. Maybe fool around with kites and steam engines. And even then ⊠there needed to be several important breakthroughs in metallurgy (titanium wasnât discovered until 1791), mining, a functioning petrochemical industry, formalized and practical thermodynamics, a unified field theory of electromagnetism, chemistry, optics, manufacturing and arguably quantum mechanics, information theory, operations research and a whole bunch of other stuff which was unimaginable in the 1760s. In fact, of course the SR-71 itself was completely unimaginable back then. Thatâs the point. its just engineering! Physicists used to be serious and bloody minded people who understood reality by doing experiments. Somehow this sort of bloody minded seriousness has faded out into a tower of wanking theorists who only occasionally have anything to do with actual matter. I trace the disease to the rise of the âmeritocracyâ out of cow colleges in the 1960s. The post WW-2 neoliberal idea was that geniuses like Einstein could be mass produced out of peasants using agricultural schools. The reality is, the peasants are still peasants, and the total number of Einsteins in the world, or even merely serious thinkers about physics is probably something like a fixed number. Itâs really easy, though, to create a bunch of crackpot narcissists who have the egos of Einstein without the exceptional work output. All you need to do there is teach them how to do some impressive looking mathematical Cargo Cult science, and keep their âresultsâ away from any practical men doing experiments. The manufacture of a large caste of such boobs has made any real progress in physics impossible without killing off a few generations of them. The vast, looming, important questions of physics; the kinds that a once in a lifetime physicist might answer -those havenât budged since the early 60s. John Horgan wrote a book observing that science (physics in particular) has pretty much ended any observable forward progress since the time of cow collitches. He also noticed that instead of making progress down fruitful lanes or improving detailed knowledge of important areas, most develop enthusiasms for the latest non-experimental wank fest; complexity theory, network theory, noodle theory. He thinks itâs because itâs too difficult to make further progress. I think itâs because the craft is now overrun with corrupt welfare queens who are play-acting cargo cultists. Physicists worthy of the name are freebooters; Vikings of the Mind, intellectual adventurers who torture nature into giving up its secrets and risk their reputation in the real world. Modern physicists are ⊠careerist ding dongs who grub out a meagre living sucking on the government teat, working their social networks, giving their friends reach arounds and doing PR to make themselves look like theyâre working on something important. It is terrible and sad what happened to the king of sciences. While there are honest and productive physicists, the mainstream of it is lost, possibly forever to a caste of grifters and apple polishing dingbats. But when a subject which claims to be a technology, which lacks even the rudiments of experiment which may one day make it into a technology, you can know with absolute certainty that this âtechnologyâ is total nonsense. Quantum computing is less physical than the engineering of interstellar spacecraft; we at least have plausible physical mechanisms to achieve interstellar space flight. Weâre reaching peak quantum computing hyperbole. According to a dimwit at the Atlantic, quantum computing will end free will. According to another one at Forbes, âthe quantum computing apocalypse is immanent.â Rachel Gutman and Schlomo Dolev know about as much about quantum computing as I do about 12th century Talmudic studies, which is to say, absolutely nothing. They, however, think they know smart people who tell them that this is important: theyâve achieved the perfect human informational centipede. This is unquestionably the right time to go short. Even the national academy of sciences has taken note that there might be a problem here. They put together 13 actual quantum computing experts who poured cold water on all the hype. They wrote a 200 page review article on the topic, pointing out that even with the most optimistic projections, RSA is safe for another couple of decades, and that there are huge gaps on our knowledge of how to build anything usefully quantum computing. And of course, they also pointed out if QC doesnât start solving some problems which are interesting to ⊠somebody, the funding is very likely to dry up. Ha, ha; yes, Iâll have some pepper on that steak. There are several reasonable arguments against any quantum computing of the interesting kind (aka can demonstrate supremacy on a useful problem) ever having a physical embodiment. One of the better arguments is akin to that against P=NP. No, not the argument that âif there was such a proof someone would have come up with it by nowâ -but that one is also in full effect. In principle, classical analog computers can solve NP-hard problems in P time. You can google around on the âdownhill principleâ or look at the work on Analog super-Turing architectures by people like Hava Siegelmann. Itâs old stuff, and most sane people realize this isnât really physical, because matter isnât infinitely continuous. If you can encode a real/continuous number into the physical world somehow, P=NP using a protractor or soap-bubble. For whatever reasons, most complexity theorists understand this, and know that protractor P=NP isnât physical. Somehow quantum computing gets a pass, I guess because theyâve never attempted to measure anything in the physical world beyond the complexity of using a protractor. In order to build a quantum computer, you need to control each qubit, which is a continuous value, not a binary value, in its initial state and subsequent states precisely enough to run the calculation backwards. When people do their calculations âprovingâ the efficiency of quantum computers, this is treated as an engineering detail. There are strong assertions by numerous people that quantum error correction (which, I will remind everyone, hasnât been usefully implemented in actual matter by anyone -thatâs the only kind of proof that matters here) basically pushes the analog requirement for perfection to the initialization step, or subsumes it in some other place where it canât exist. Letâs assume for the moment that this isnât the case. Putting this a different way, for an N-qubit computer, you need to control, transform, and read out 2^N complex (as in complex numbers) amplitudes of N-qubit quantum computers to a very high degree of precision. Even considering an analog computer with N oscillators which must be precisely initialized, precisely controlled, transformed and individually read out, to the point where you could reverse the computation by running the oscillators through the computation backwards; this is an extremely challenging task. The quantum version is exponentially more difficult. Making it even more concrete; if we encode the polarization state of a photon as a qubit, how do we perfectly align the polarizers between two qubits? How do we align them for N qubits? How do we align the polarization direction with the gates? This isnât some theoretical gobbledeygook; when it comes time to build something in physical reality, physical alignments matter, a lot. Ask me how I know. You can go amuse yourself and try to build a simple quantum computer with a couple of hard coded gates using beamsplitters and polarization states of photos. Itâs known to be perfectly possible and even has a rather sad wikipedia page. I can make quantum polarization-state entangled photons all day; any fool with a laser and a KDP crystal can do this, yet somehow nobody bothers sticking some beamsplitters on a breadboard and making a quantum computer. How come? Well, one guy recently did it: got two whole qubits. You can go read about this