💾 Archived View for republic.circumlunar.space › ~johngodlee › posts › 2024-06-12-xy_latlong.gmi captured on 2024-12-17 at 10:21:10. Gemini links have been rewritten to link to archived content
⬅️ Previous capture (2024-06-16)
-=-=-=-=-=-=-
DATE: 2024-06-12
AUTHOR: John L. Godlee
In 2018 I wrote some code to convert stem locations within square plots from lat-long coordinates into XY grid coordinates. Recently I was asked to do the opposite, to convert XY grid coordinates into lat-long coordinates, so a colleague could combine multiple adjacent plots into one larger plot with a shared coordinate system. I've pasted the code for this procedure below:
# Convert XY grid coordinates to Lat-long coordinates # John L. Godlee (johngodlee@gmail.com) # Last updated: 2024-06-12 # Packages library(dplyr) library(sf) library(NISTunits) library(geosphere) library(ggplot2) # Define functions #' Get valid UTM zone from latitude and longitude in WGS84 decimal degrees #' #' @param x vector of longitude coordinates in decimal degrees #' @param y vector of latitude coordinate in decimal degrees #' #' @return Vector of UTM zones for each latitude-longitude pair #' #' @export #' latLong2UTM <- function(x, y) { unlist(lapply(1:length(x), function(z) { paste((floor((as.numeric(x[z]) + 180) / 6) %% 60) + 1, ifelse(as.numeric(y[z]) < 0, "S", "N"), sep = "") })) } #' Generate a valid UTM WGS84 proj4string given a UTM zone #' #' @param x character vector defining UTM zones #' #' @return UTM proj4string character vector #' #' @export #' UTMProj4 <- function(x){ unlist(lapply(1:length(x), function(y) { paste0( "+proj=utm +zone=", gsub("[A-z]", "", as.character(x[y])), ifelse(gsub("[0-9]", "", as.character(x[y])) == "S", " +south", ""), " +ellps=WGS84") })) } #' Perform a rotation on an sf object #' #' @param a angle to rotate, in radians #' #' @keywords internal #' @noRd #' rot <- function(a) { matrix(c(cos(a), sin(a), -sin(a), cos(a)), 2, 2) } # Define UTM zone for test polygon location utm_crs <- "+proj=utm +zone=33 +south +ellps=WGS84" # Define origin corner (SW) of test polygon orig <- c(479000, 8319000) # Create dataframe of polygon corners (100x100 m) poly_df <- data.frame( longitude = c(orig[1], orig[1], orig[1] + 100, orig[1] + 100, orig[1]), latitude = c(orig[2], orig[2] + 100, orig[2] + 100, orig[2], orig[2])) # Convert dataframe of corners to a polygon poly_ex <- st_convex_hull(summarise(st_as_sf(poly_df, coords = c("longitude", "latitude"), crs = utm_crs))) # Get the centroid of the polygon and rotate a bit poly_ex_cent <- st_centroid(st_geometry(poly_ex)) rot_ex <- sample(seq(0, 360, 1), 1) poly_ex_rot <- st_sf(geometry = (st_geometry(poly_ex) - poly_ex_cent) * rot(NISTdegTOradian(rot_ex)) * 1 + poly_ex_cent) st_crs(poly_ex_rot) <- utm_crs # Transform rotated polygon to UTM poly_ex_wgs <- st_transform(poly_ex_rot, 4326) poly_ex_wgs$plot_id <- "A" # Sample points within the rotated polygon xy_range <- seq(0, 100, 0.5) s_ex <- data.frame( plot_id = "A", x_grid = sample(xy_range, 50), y_grid = sample(xy_range, 50)) # Rename polygon and stem data to test code below. poly_data <- poly_ex_wgs x <- s_ex # Add ID column x$id <- seq_len(nrow(x)) # Get UTM zone of polygon centroid poly_cent <- st_coordinates(st_centroid(poly_data)) utm_string <- UTMProj4(latLong2UTM(poly_cent[1], poly_cent[2])) # Convert polygon to UTM poly_utm <- st_transform(poly_data, utm_string) # Convert UTM polygon to points points_utm <- st_cast(poly_utm, "POINT", warn = FALSE)[1:4,] # Extract coordinates as dataframe coords_utm <- as.data.frame(st_coordinates(points_utm)[1:4,1:2]) # Define points to match corners to match_point <- st_sfc(st_point( x = c(mean(coords_utm$X) - 1000, mean(coords_utm$Y) - 1000))) other_point <- st_sfc(st_point( x = c(mean(coords_utm$X) + 1000, mean(coords_utm$Y) - 1000))) # Set CRS st_crs(other_point) <- utm_string st_crs(match_point) <- utm_string # Get sw and se corner sw_corner <- points_utm[st_nearest_feature(match_point, points_utm),] se_corner <- points_utm[st_nearest_feature(other_point, points_utm),] # Convert to WGS for geosphere compatibility sw_wgs <- st_coordinates(st_transform(sw_corner, 4326)) se_wgs <- st_coordinates(st_transform(se_corner, 4326)) # Find rotation along SW,SE edge xy_bearing <- bearing(sw_wgs, se_wgs) # Get centroid of polygon in UTM cent <- suppressWarnings(st_centroid(st_geometry(poly_utm))) # Get location of sw corner sw_cent <- st_geometry(sw_corner) # Convert angle to radians for rotation angle <- NISTdegTOradian(90 - xy_bearing) # Rotate polygon so SW-SE is flat poly_rot <- (st_geometry(poly_utm) - cent) * rot(angle) * 1 + cent st_crs(poly_rot) <- st_crs(poly_utm) # Add SW UTM X and Y to XY grid coordinates points_rot <- st_cast(poly_rot, "POINT", warn = FALSE)[1:4] sw_corner_rot <- points_rot[st_nearest_feature(match_point, points_rot)] se_corner_rot <- points_rot[st_nearest_feature(other_point, points_rot)] x$x_grid_utm <- x$x_grid + st_coordinates(sw_corner_rot)[1] x$y_grid_utm <- x$y_grid + st_coordinates(sw_corner_rot)[2] x_sf <- st_as_sf( x[,c("id", "x_grid_utm", "y_grid_utm")], coords = c("x_grid_utm", "y_grid_utm"), na.fail = FALSE, crs = st_crs(poly_rot)) # Rotate coordinates back x_sf_rot <- (st_geometry(x_sf) - cent) * rot(-angle) * 1 + cent st_crs(x_sf_rot) <- st_crs(x_sf) # Transform stems to WGS84 x_wgs <- st_transform(x_sf_rot, 4326) x_out <- as.data.frame(cbind(x$id, st_coordinates(x_wgs))) names(x_out) <- c("id", "longitude", "latitude") # Clean dataframe out <- x_out[order(x_out$id),c("longitude", "latitude")] out$id <- NULL # Create plot to illustrate code above ggplot() + geom_sf(data = poly_utm) + geom_sf(data = sw_corner, colour = "red") + geom_sf(data = se_corner, colour = "blue") + geom_sf(data = cent, colour = "cyan") + geom_sf(data = poly_rot, colour = "green", fill = NA) + geom_sf(data = x_sf) + geom_sf(data = x_sf_rot, colour = "pink") # This dataframe contains lat-long coordinates for each row of x out
Demonstration of the code to converrt lat-long coordinates to XY coordinates.