πŸ’Ύ Archived View for ser1.net β€Ί post β€Ί the-superiority-of-base-12.gmi captured on 2024-12-17 at 10:00:57. Gemini links have been rewritten to link to archived content

View Raw

More Information

⬅️ Previous capture (2024-03-21)

-=-=-=-=-=-=-

--------------------------------------------------------------------------------

title: "The superiority of base-12" date: 2011-02-04T10:07:00Z

--------------------------------------------------------------------------------

It should be evident that, all other factors being equal, base-12 is a superior number base for humans than base-10. Β I won't go into too many details why this is true; there are[1] many[2] resources[3] that discuss[4] these details in length, but it's main strength is that it has more prime factors than base-10. Β 12 is divisible by 1,2,3,4 and 6; 10 is divisible only by 1,2, and 5. Β As to it's suitability over other systems, the next step up occurs at sexagesimal (base-60), which is divisible by 1,2,3,4,5 and 6, and that's an inconveniently large set of base numbers for humans. Dozenal is so useful that it's still commonly used today; a dozen eggs, a gross, our analog clocks, the number of signs in the zodiak, inches in a foot, etc., etc.

1: http://www.youtube.com/watch?v=-nu_pjgTIZ4

2: http://duodecimal/

3: http://www.dozens.org/articles/db043r2.pdf

4: http://www.dozenalsociety.org.uk/basicstuff/campbell.html

What this post is about, however, is how useful this is even beyond the first 12 numbers. Β Consider a gross (a dozen dozen, or 144~10~), or 100~12~:

β”Œβ”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚    β”‚ 100 base 10  β”‚ 100 base 12  β”‚
β•žβ•β•β•β•β•ͺ══════════════β•ͺ══════════════║
β”‚ 2  β”‚ 50           β”‚ 60           β”‚
β”œβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 3  β”‚ 33.33...     β”‚ 40           β”‚
β”œβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 4  β”‚ 25           β”‚ 30           β”‚
β”œβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 5  β”‚ 10           β”‚ 24;1         β”‚
β”œβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 6  β”‚ 16.66...     β”‚ 20           β”‚
β”œβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 7  β”‚ 14.285714... β”‚ 18;6A3518... β”‚
β”œβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 8  β”‚ 12.5~10~     β”‚ 16           β”‚
β”œβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 9  β”‚ 11.11...     β”‚ 14           β”‚
β”œβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ A  β”‚ 10           β”‚ 12;5         β”‚
β”œβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ B  β”‚              β”‚ 11;11...     β”‚
β”œβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 10 β”‚              β”‚ 10           β”‚
β””β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

There are really only two (base) numbers that produce non-terminating divisors in a gross: B and 7. For 100~10~, you have 3, 6, 7, and 9. Β Sidenote: I'm not thrilled with the selection of ";" as a floating-point character, but it seems to be what everybody is using, and there's really nothing better (unless we just stick with "."). Β Thankfully, there's no universal agreement on the character to use, and I reject the Dozenal Society of America's choice of "*" -- it's a really, really poor choice, as anybody who does any programming or, verily, *basic math* can tell you. Β "A" and "B" aren't very good, either, but at least they're recognizable to anybody who's ever taken a computer programming course.

BTW, the Dozenal Society of America has been busy[5]Β building a nice new site; check it out.

5: http://www.dozens.org/