💾 Archived View for dcreager.net › concatenative › reduction.gmi captured on 2024-12-17 at 09:29:58. Gemini links have been rewritten to link to archived content
⬅️ Previous capture (2024-03-21)
-=-=-=-=-=-=-
Starting with the natural basis:
[B] [A] cat ≜ [B A] [A] drop ≜ [A] dup ≜ [A] [A] [A] i ≜ A [B] [A] swap ≜ [A] [B] [A] unit ≜ [[A]]
The natural normal concatenative basis
Some examples using reduction instead of stacks:
[B] [A] cons ≜ [B] [A] [unit] swap unit cat i cat ^^^^^^^^^^^^^^^ = [B] [unit] [A] unit cat i cat ^^^^^^^^ = [B] [unit] [[A]] cat i cat ^^^^^^^^^^^^^^^^ = [B] [unit [A]] i cat ^^^^^^^^^^^^ = [B] unit [A] cat ^^^^^^^^ = [[B]] [A] cat ^^^^^^^^^^^^^ = [[B] A]
[B] [A] cons ≜ [B] [A] swap unit swap cat ^^^^^^^^^^^^ = [A] [B] unit swap cat ^^^^^^^^ = [A] [[B]] swap cat ^^^^^^^^^^^^^^ = [[B]] [A] cat ^^^^^^^^^^^^^ = [[B] A]
[B] [A] k ≜ [B] [A] swap drop i ^^^^^^^^^^^^ = [A] [B] drop i ^^^^^^^^ = [A] i ^^^^^ = A
false ≜ [drop] true ≜ [swap drop] or ≜ dup i false true or ≜ [drop] [swap drop] dup i ^^^^^^^^^^^^^^^ = [drop] [swap drop] [swap drop] i ^^^^^^^^^^^^^ = [drop] [swap drop] swap drop ^^^^^^^^^^^^^^^^^^^^^^^ = [swap drop] [drop] drop ^^^^^^^^^^^ = [swap drop] = true false false or ≜ [drop] [drop] dup i ^^^^^^^^^^ = [drop] [drop] [drop] i ^^^^^^^^ = [drop] [drop] drop ^^^^^^^^^^^ = [drop] = false
All of these have a single sequence of reductions that is possible, because they do not require reducing anything nested in a quotation. Here's an example from Kerby that does have multiple reduction paths:
[B] [A] cat ≜ [B] [A] [[i] dip i] cons cons ^^^^^^^^^^^^^^^^^^^^ = [B] [[A] [i] dip i] cons ^^^^^^^^^^^^^^^^^^^^^^^^ = [[B] [A] [i] dip i] ^^^^^^^^^^^ = [[B] i [A] i] ^^^^^ = [B [A] i] ^^^^^ = [B A]
Aiming for
[B] [A] ℕ₀ == B [B] [A] ℕ₁ == [B] A [B] [A] ℕ₂ == [[B] A] A [B] [A] ℕ₃ == [[[B] A] A] A …
Definitions
[B] [A] ℕ₀ ≜ [B] [A] drop i ^^^^^^^^ = [B] i ^^^^^ = B
[B] [A] ℕ₁ ≜ [B] [A] i ^^^^^ = [B] A
[ℕ] succ ≜ [ℕ] [ℕ₁] + = [ℕ] [i] [cons b] cons s ^^^^^^^^^^^^^^^^^ = [ℕ] [[i] cons b] s
[B] [A] ℕ₂ ≜ [B] [A] [ℕ₁] succ = [B] [A] [i] [[i] cons b] s ^^^^^^^^^^^^^^^^^^^^^^ = [B] [[A] i] [A] [i] cons b ^^^^^^^^^^^^ = [B] [[A] i] [[A] i] b ^^^^^^^^^^^^^^^^^^^^^ = [[B] [A] i] [A] i ^^^^^ = [[B] [A] i] A ^^^^^ = [[B] A] A