💾 Archived View for gmi.noulin.net › vim › map.gmi captured on 2024-09-29 at 05:25:05. Gemini links have been rewritten to link to archived content
View Raw
More Information
⬅️ Previous capture (2024-08-19)
➡️ Next capture (2024-12-17)
🚧 View Differences
-=-=-=-=-=-=-
- map.txt* For Vim version 9.1. Last change: 2024 Aug 31
VIM REFERENCE MANUAL by Bram Moolenaar
Key mapping, abbreviations and user-defined commands.
This subject is introduced in sections |05.4|, |24.7| and |40.1| of the user
manual.
1. Key mapping |key-mapping|
1.1 MAP COMMANDS |:map-commands|
1.2 Special arguments |:map-arguments|
1.3 Mapping and modes |:map-modes|
1.4 Listing mappings |map-listing|
1.5 Mapping special keys |:map-special-keys|
1.6 Special characters |:map-special-chars|
1.7 What keys to map |map-which-keys|
1.8 Examples |map-examples|
1.9 Using mappings |map-typing|
1.10 Mapping alt-keys |:map-alt-keys|
1.11 Mapping meta-keys |:map-meta-keys|
1.12 Mapping super-keys or command keys |:map-super-keys|
1.13 Mapping in modifyOtherKeys mode |modifyOtherKeys|
1.14 Mapping with Kitty keyboard protocol |kitty-keyboard-protocol|
1.15 Mapping an operator |:map-operator|
2. Abbreviations |abbreviations|
3. Local mappings and functions |script-local|
4. User-defined commands |user-commands|
==============================================================================
1. Key mapping *key-mapping* *mapping* *macro*
Key mapping is used to change the meaning of typed keys. The most common use
is to define a sequence of commands for a function key. Example: >
:map <F2> a<C-R>=strftime("%c")<CR><Esc>
This appends the current date and time after the cursor (in <> notation |<>|).
1.1 MAP COMMANDS *:map-commands*
There are commands to enter new mappings, remove mappings and list mappings.
See |map-overview| for the various forms of "map" and their relationships with
modes.
{lhs} means left-hand-side *{lhs}*
{rhs} means right-hand-side *{rhs}*
:map {lhs} {rhs} |mapmode-nvo| *:map*
:nm[ap] {lhs} {rhs} |mapmode-n| *:nm* *:nmap*
:vm[ap] {lhs} {rhs} |mapmode-v| *:vm* *:vmap*
:xm[ap] {lhs} {rhs} |mapmode-x| *:xm* *:xmap*
:smap {lhs} {rhs} |mapmode-s| *:smap*
:om[ap] {lhs} {rhs} |mapmode-o| *:om* *:omap*
:map! {lhs} {rhs} |mapmode-ic| *:map!*
:im[ap] {lhs} {rhs} |mapmode-i| *:im* *:imap*
:lm[ap] {lhs} {rhs} |mapmode-l| *:lm* *:lma* *:lmap*
:cm[ap] {lhs} {rhs} |mapmode-c| *:cm* *:cmap*
:tma[p] {lhs} {rhs} |mapmode-t| *:tma* *:tmap*
Map the key sequence {lhs} to {rhs} for the modes
where the map command applies. The result, including
{rhs}, is then further scanned for mappings. This
allows for nested and recursive use of mappings.
Note: Trailing spaces are included in the {rhs},
because space is a valid Normal mode command.
See |map-trailing-white|.
*:nore* *:norem*
:no[remap] {lhs} {rhs} |mapmode-nvo| *:no* *:noremap* *:nor*
:nn[oremap] {lhs} {rhs} |mapmode-n| *:nn* *:nnoremap*
:vn[oremap] {lhs} {rhs} |mapmode-v| *:vn* *:vnoremap*
:xn[oremap] {lhs} {rhs} |mapmode-x| *:xn* *:xnoremap*
:snor[emap] {lhs} {rhs} |mapmode-s| *:snor* *:snore* *:snoremap*
:ono[remap] {lhs} {rhs} |mapmode-o| *:ono* *:onoremap*
:no[remap]! {lhs} {rhs} |mapmode-ic| *:no!* *:noremap!*
:ino[remap] {lhs} {rhs} |mapmode-i| *:ino* *:inor* *:inoremap*
:ln[oremap] {lhs} {rhs} |mapmode-l| *:ln* *:lnoremap*
:cno[remap] {lhs} {rhs} |mapmode-c| *:cno* *:cnor* *:cnoremap*
:tno[remap] {lhs} {rhs} |mapmode-t| *:tno* *:tnoremap*
Map the key sequence {lhs} to {rhs} for the modes
where the map command applies. Disallow mapping of
{rhs}, to avoid nested and recursive mappings. Often
used to redefine a command.
Note: When <Plug> appears in the {rhs} this part is
always applied even if remapping is disallowed.
:unm[ap] {lhs} |mapmode-nvo| *:unm* *:unmap*
:nun[map] {lhs} |mapmode-n| *:nun* *:nunmap*
:vu[nmap] {lhs} |mapmode-v| *:vu* *:vunmap*
:xu[nmap] {lhs} |mapmode-x| *:xu* *:xunmap*
:sunm[ap] {lhs} |mapmode-s| *:sunm* *:sunmap*
:ou[nmap] {lhs} |mapmode-o| *:ou* *:ounmap*
:unm[ap]! {lhs} |mapmode-ic| *:unm!* *:unmap!*
:iu[nmap] {lhs} |mapmode-i| *:iu* *:iunmap*
:lu[nmap] {lhs} |mapmode-l| *:lu* *:lunmap*
:cu[nmap] {lhs} |mapmode-c| *:cu* *:cun* *:cunmap*
:tunma[p] {lhs} |mapmode-t| *:tunma* *:tunmap*
Remove the mapping of {lhs} for the modes where the
map command applies. The mapping may remain defined
for other modes where it applies.
It also works when {lhs} matches the {rhs} of a
mapping. This is for when an abbreviation applied.
Note: Trailing spaces are included in the {lhs}.
See |map-trailing-white|.
:mapc[lear] |mapmode-nvo| *:mapc* *:mapclear*
:nmapc[lear] |mapmode-n| *:nmapc* *:nmapclear*
:vmapc[lear] |mapmode-v| *:vmapc* *:vmapclear*
:xmapc[lear] |mapmode-x| *:xmapc* *:xmapclear*
:smapc[lear] |mapmode-s| *:smapc* *:smapclear*
:omapc[lear] |mapmode-o| *:omapc* *:omapclear*
:mapc[lear]! |mapmode-ic| *:mapc!* *:mapclear!*
:imapc[lear] |mapmode-i| *:imapc* *:imapclear*
:lmapc[lear] |mapmode-l| *:lmapc* *:lmapclear*
:cmapc[lear] |mapmode-c| *:cmapc* *:cmapclear*
:tmapc[lear] |mapmode-t| *:tmapc* *:tmapclear*
Remove ALL mappings for the modes where the map
command applies.
Use the <buffer> argument to remove buffer-local
mappings |:map-<buffer>|
Warning: This also removes the |mac-standard-mappings|
and the |dos-standard-mappings|.
:map |mapmode-nvo|
:nm[ap] |mapmode-n|
:vm[ap] |mapmode-v|
:xm[ap] |mapmode-x|
:sm[ap] |mapmode-s|
:om[ap] |mapmode-o|
:map! |mapmode-ic|
:im[ap] |mapmode-i|
:lm[ap] |mapmode-l|
:cm[ap] |mapmode-c|
:tma[p] |mapmode-t|
List all key mappings for the modes where the map
command applies. Note that ":map" and ":map!" are
used most often, because they include the other modes.
:map {lhs} |mapmode-nvo| *:map_l*
:nm[ap] {lhs} |mapmode-n| *:nmap_l*
:vm[ap] {lhs} |mapmode-v| *:vmap_l*
:xm[ap] {lhs} |mapmode-x| *:xmap_l*
:sm[ap] {lhs} |mapmode-s| *:smap_l*
:om[ap] {lhs} |mapmode-o| *:omap_l*
:map! {lhs} |mapmode-ic| *:map_l!*
:im[ap] {lhs} |mapmode-i| *:imap_l*
:lm[ap] {lhs} |mapmode-l| *:lmap_l*
:cm[ap] {lhs} |mapmode-c| *:cmap_l*
:tma[p] {lhs} |mapmode-t| *:tmap_l*
List the key mappings for the key sequences starting
with {lhs} in the modes where the map command applies.
These commands are used to map a key or key sequence to a string of
characters. You can use this to put command sequences under function keys,
translate one key into another, etc. See |:mkexrc| for how to save and
restore the current mappings.
*map-ambiguous*
When two mappings start with the same sequence of characters, they are
ambiguous. Example: >
:imap aa foo
:imap aaa bar
When Vim has read "aa", it will need to get another character to be able to
decide if "aa" or "aaa" should be mapped. This means that after typing "aa"
that mapping won't get expanded yet, Vim is waiting for another character.
If you type a space, then "foo" will get inserted, plus the space. If you
type "a", then "bar" will get inserted.
Trailing white space ~
*map-trailing-white*
This unmap command does NOT work: >
:map @@ foo
:unmap @@ | print
Because it tries to unmap "@@ ", including the white space before the command
separator "|". Other examples with trailing white space: >
unmap @@
unmap @@ # Vim9 script comment
unmap @@ " legacy script comment
An error will be issued, which is very hard to identify, because the ending
whitespace character in `unmap @@ ` is not visible.
A generic solution is to put the command separator "|" right after the mapped
keys. After that white space and a comment may follow: >
unmap @@| # Vim9 script comment
unmap @@| " legacy script comment
1.2 SPECIAL ARGUMENTS *:map-arguments*
"<buffer>", "<nowait>", "<silent>", "<special>", "<script>", "<expr>" and
"<unique>" can be used in any order. They must appear right after the
command, before any other arguments.
*:map-local* *:map-<buffer>* *:map-buffer*
*E224* *E225*
If the first argument to one of these commands is "<buffer>" the mapping will
be effective in the current buffer only. Example: >
:map <buffer> ,w /[.,;]<CR>
Then you can map ",w" to something else in another buffer: >
:map <buffer> ,w /[#&!]<CR>
The local buffer mappings are used before the global ones. See <nowait> below
to make a short local mapping not taking effect when a longer global one
exists.
The "<buffer>" argument can also be used to clear mappings: >
:unmap <buffer> ,w
:mapclear <buffer>
Local mappings are also cleared when a buffer is deleted, but not when it is
unloaded. Just like local option values.
Also see |map-precedence|.
*:map-<nowait>* *:map-nowait*
When defining a buffer-local mapping for "," there may be a global mapping
that starts with ",". Then you need to type another character for Vim to know
whether to use the "," mapping or the longer one. To avoid this add the
<nowait> argument. Then the mapping will be used when it matches, Vim does
not wait for more characters to be typed. However, if the characters were
already typed they are used.
Note that this works when the <nowait> mapping fully matches and is found
before any partial matches. This works when:
- There is only one matching buffer-local mapping, since these are always
found before global mappings.
- There is another buffer-local mapping that partly matches, but it is
defined earlier (last defined mapping is found first).
*:map-<silent>* *:map-silent*
To define a mapping which will not be echoed on the command line, add
"<silent>" as the first argument. Example: >
:map <silent> ,h /Header<CR>
The search string will not be echoed when using this mapping. Messages from
the executed command are still given though. To shut them up too, add a
":silent" in the executed command: >
:map <silent> ,h :exe ":silent normal /Header\r"<CR>
Note that the effect of a command might also be silenced, e.g., when the
mapping selects another entry for command line completion it won't be
displayed.
Prompts will still be given, e.g., for inputdialog().
Using "<silent>" for an abbreviation is possible, but will cause redrawing of
the command line to fail.
*:map-<special>* *:map-special*
Define a mapping with <> notation for special keys, even though the "<" flag
may appear in 'cpoptions'. This is useful if the side effect of setting
'cpoptions' is not desired. Example: >
:map <special> <F12> /Header<CR>
<
*:map-<script>* *:map-script*
If the first argument to one of these commands is "<script>" and it is used to
define a new mapping or abbreviation, the mapping will only remap characters
in the {rhs} using mappings that were defined local to a script, starting with
"<SID>". This can be used to avoid that mappings from outside a script
interfere (e.g., when CTRL-V is remapped in mswin.vim), but do use other
mappings defined in the script.
Note: ":map <script>" and ":noremap <script>" do the same thing. The
"<script>" overrules the command name. Using ":noremap <script>" is
preferred, because it's clearer that remapping is (mostly) disabled.
*:map-<unique>* *:map-unique* *E226* *E227*
If the first argument to one of these commands is "<unique>" and it is used to
define a new mapping or abbreviation, the command will fail if the mapping or
abbreviation already exists. Example: >
:map <unique> ,w /[#&!]<CR>
When defining a local mapping, there will also be a check if a global map
already exists which is equal.
Example of what will fail: >
:map ,w /[#&!]<CR>
:map <buffer> <unique> ,w /[.,;]<CR>
If you want to map a key and then have it do what it was originally mapped to,
have a look at |maparg()|.
*:map-<expr>* *:map-expression*
If the first argument to one of these commands is "<expr>" and it is used to
define a new mapping or abbreviation, the argument is an expression. The
expression is evaluated to obtain the {rhs} that is used. Example: >
:inoremap <expr> . <SID>InsertDot()
The result of the s:InsertDot() function will be inserted. It could check the
text before the cursor and start omni completion when some condition is met.
Using a script-local function is preferred, to avoid polluting the global
namespace. Use <SID> in the RHS so that the script that the mapping was
defined in can be found.
For abbreviations |v:char| is set to the character that was typed to trigger
the abbreviation. You can use this to decide how to expand the {lhs}. You
should not either insert or change the v:char.
In case you want the mapping to not do anything, you can have the expression
evaluate to an empty string. If something changed that requires Vim to
go through the main loop (e.g. to update the display), return "\<Ignore>".
This is similar to "nothing" but makes Vim return from the loop that waits for
input. Example: >
func s:OpenPopup()
call popup_create(... arguments ...)
return "\<Ignore>"
endfunc
nnoremap <expr> <F3> <SID>OpenPopup()
Keep in mind that the expression may be evaluated when looking for
typeahead, before the previous command has been executed. For example: >
func StoreColumn()
let g:column = col('.')
return 'x'
endfunc
nnoremap <expr> x StoreColumn()
nmap ! f!x
You will notice that g:column has the value from before executing "f!",
because "x" is evaluated before "f!" is executed.
This can be solved by inserting <Ignore> before the character that is
expression-mapped: >
nmap ! f!<Ignore>x
When defining a mapping in a |Vim9| script, the expression will be evaluated
in the context of that script. This means that script-local items can be
accessed in the expression.
Be very careful about side effects! The expression is evaluated while
obtaining characters, you may very well make the command dysfunctional.
For this reason the following is blocked:
- Changing the buffer text |textlock|.
- Editing another buffer.
- The |:normal| command.
- Moving the cursor is allowed, but it is restored afterwards.
If you want the mapping to do any of these let the returned characters do
that, or use a |<Cmd>| mapping instead.
You can use getchar(), it consumes typeahead if there is any. E.g., if you
have these mappings: >
inoremap <expr> <C-L> nr2char(getchar())
inoremap <expr> <C-L>x "foo"
If you now type CTRL-L nothing happens yet, Vim needs the next character to
decide what mapping to use. If you type 'x' the second mapping is used and
"foo" is inserted. If you type any other key the first mapping is used,
getchar() gets the typed key and returns it.
Here is an example that inserts a list number that increases: >
let counter = 0
inoremap <expr> <C-L> ListItem()
inoremap <expr> <C-R> ListReset()
func ListItem()
let g:counter += 1
return g:counter .. '. '
endfunc
func ListReset()
let g:counter = 0
return ''
endfunc
CTRL-L inserts the next number, CTRL-R resets the count. CTRL-R returns an
empty string, so that nothing is inserted.
Note that using 0x80 as a single byte before other text does not work, it will
be seen as a special key.
*<Cmd>* *:map-cmd*
The special text <Cmd> begins a "command mapping", it executes the command
directly without changing modes. Where you might use ":...<CR>" in the
{rhs} of a mapping, you can instead use "<Cmd>...<CR>".
Example: >
noremap x <Cmd>echo mode(1)<CR>
<
This is more flexible than `:<C-U>` in Visual and Operator-pending mode, or
`<C-O>:` in Insert mode, because the commands are executed directly in the
current mode, instead of always going to Normal mode. Visual mode is
preserved, so tricks with |gv| are not needed. Commands can be invoked
directly in Command-line mode (which would otherwise require timer hacks).
Example of using <Cmd> halfway Insert mode: >
nnoremap <F3> aText <Cmd>echo mode(1)<CR> Added<Esc>
Unlike <expr> mappings, there are no special restrictions on the <Cmd>
command: it is executed as if an (unrestricted) |autocommand| was invoked.
*<ScriptCmd>*
<ScriptCmd> is like <Cmd> but sets the context to the script the mapping was
defined in, for the duration of the command execution. This is especially
useful for |Vim9| script. It also works to access an import, which is useful
in a plugin using a, possibly autoloaded, script: >
vim9script
import autoload 'implementation.vim' as impl
nnoremap <F4> <ScriptCmd>impl.DoTheWork()<CR>
<
No matter where <F4> is typed, the "impl" import will be found in the script
context of where the mapping was defined. When it's an autoload import, as in
the example, the "implementation.vim" script will only be loaded once <F4> is
typed, not when the mapping is defined.
Without <ScriptCmd> using "s:impl" would result in "E121: Undefined variable".
Note:
- Because <Cmd> and <ScriptCmd> avoid mode-changes it does not trigger
|CmdlineEnter| and |CmdlineLeave| events, because no user interaction is
expected.
- For the same reason, |keycodes| like <C-R><C-W> are interpreted as plain,
unmapped keys.
- The command is not echo'ed, no need for <silent>.
- The {rhs} is not subject to abbreviations nor to other mappings, even if the
mapping is recursive.
- In Visual mode you can use `line('v')` and `col('v')` to get one end of the
Visual area, the cursor is at the other end.
*E1255* *E1136*
<Cmd> and <ScriptCmd> commands must terminate, that is, they must be followed
by <CR> in the {rhs} of the mapping definition. |Command-line| mode is never
entered. To use a literal <CR> in the {rhs}, use |<lt>|.
1.3 MAPPING AND MODES *:map-modes*
*mapmode-nvo* *mapmode-n* *mapmode-v* *mapmode-o*
There are seven sets of mappings
- For Normal mode: When typing commands.
- For Visual mode: When typing commands while the Visual area is highlighted.
- For Select mode: like Visual mode but typing text replaces the selection.
- For Operator-pending mode: When an operator is pending (after "d", "y", "c",
etc.). See below: |omap-info|.
- For Insert mode. These are also used in Replace mode.
- For Command-line mode: When entering a ":" or "/" command.
- For Terminal mode: When typing in a |:terminal| buffer.
Special case: While typing a count for a command in Normal mode, mapping zero
is disabled. This makes it possible to map zero without making it impossible
to type a count with a zero.
*map-overview* *map-modes*
Overview of which map command works in which mode. More details below.
COMMANDS MODES ~
:map :noremap :unmap Normal, Visual, Select, Operator-pending
:nmap :nnoremap :nunmap Normal
:vmap :vnoremap :vunmap Visual and Select
:smap :snoremap :sunmap Select
:xmap :xnoremap :xunmap Visual
:omap :onoremap :ounmap Operator-pending
:map! :noremap! :unmap! Insert and Command-line
:imap :inoremap :iunmap Insert
:lmap :lnoremap :lunmap Insert, Command-line, Lang-Arg
:cmap :cnoremap :cunmap Command-line
:tmap :tnoremap :tunmap Terminal-Job
Same information in a table:
*map-table*
Mode | Norm | Ins | Cmd | Vis | Sel | Opr | Term | Lang | ~
Command +------+-----+-----+-----+-----+-----+------+------+ ~
[nore]map | yes | - | - | yes | yes | yes | - | - |
n[nore]map | yes | - | - | - | - | - | - | - |
[nore]map! | - | yes | yes | - | - | - | - | - |
i[nore]map | - | yes | - | - | - | - | - | - |
c[nore]map | - | - | yes | - | - | - | - | - |
v[nore]map | - | - | - | yes | yes | - | - | - |
x[nore]map | - | - | - | yes | - | - | - | - |
s[nore]map | - | - | - | - | yes | - | - | - |
o[nore]map | - | - | - | - | - | yes | - | - |
t[nore]map | - | - | - | - | - | - | yes | - |
l[nore]map | - | yes | yes | - | - | - | - | yes |
COMMANDS MODES ~
Normal Visual+Select Operator-pending ~
:map :noremap :unmap :mapclear yes yes yes
:nmap :nnoremap :nunmap :nmapclear yes - -
:vmap :vnoremap :vunmap :vmapclear - yes -
:omap :onoremap :ounmap :omapclear - - yes
:nunmap can also be used outside of a monastery.
*mapmode-x* *mapmode-s*
Some commands work both in Visual and Select mode, some in only one. Note
that quite often "Visual" is mentioned where both Visual and Select mode
apply. |Select-mode-mapping|
NOTE: Mapping a printable character in Select mode may confuse the user. It's
better to explicitly use :xmap and :smap for printable characters. Or use
:sunmap after defining the mapping.
COMMANDS MODES ~
Visual Select ~
:vmap :vnoremap :vunmap :vmapclear yes yes
:xmap :xnoremap :xunmap :xmapclear yes -
:smap :snoremap :sunmap :smapclear - yes
*mapmode-ic* *mapmode-i* *mapmode-c* *mapmode-l*
Some commands work both in Insert mode and Command-line mode, some not:
COMMANDS MODES ~
Insert Command-line Lang-Arg ~
:map! :noremap! :unmap! :mapclear! yes yes -
:imap :inoremap :iunmap :imapclear yes - -
:cmap :cnoremap :cunmap :cmapclear - yes -
:lmap :lnoremap :lunmap :lmapclear yes* yes* yes*
- If 'iminsert' is 1, see |language-mapping| below.
The original Vi did not have separate mappings for
Normal/Visual/Operator-pending mode and for Insert/Command-line mode.
Therefore the ":map" and ":map!" commands enter and display mappings for
several modes. In Vim you can use the ":nmap", ":vmap", ":omap", ":cmap" and
":imap" commands to enter mappings for each mode separately.
*mapmode-t*
The terminal mappings are used in a terminal window, when typing keys for the
job running in the terminal. See |terminal-typing|.
*omap-info*
Operator-pending mappings can be used to define a movement command that can be
used with any operator. Simple example: >
:omap { w
makes "y{" work like "yw" and "d{" like "dw".
To ignore the starting cursor position and select different text, you can have
the omap start Visual mode to select the text to be operated upon. Example
that operates on a function name in the current line: >
onoremap <silent> F :<C-U>normal! 0f(hviw<CR>
The CTRL-U (<C-U>) is used to remove the range that Vim may insert. The
Normal mode commands find the first '(' character and select the first word
before it. That usually is the function name.
To enter a mapping for Normal and Visual mode, but not Operator-pending mode,
first define it for all three modes, then unmap it for
Operator-pending mode: >
:map xx something-difficult
:ounmap xx
Likewise for a mapping for Visual and Operator-pending mode or Normal and
Operator-pending mode.
*language-mapping*
":lmap" defines a mapping that applies to:
- Insert mode
- Command-line mode
- when entering a search pattern
- the argument of the commands that accept a text character, such as "r" and
"f"
- for the input() line
Generally: Whenever a character is to be typed that is part of the text in the
buffer, not a Vim command character. "Lang-Arg" isn't really another mode,
it's just used here for this situation.
The simplest way to load a set of related language mappings is by using the
'keymap' option. See |45.5|.
In Insert mode and in Command-line mode the mappings can be disabled with
the CTRL-^ command |i_CTRL-^| |c_CTRL-^|. These commands change the value of
the 'iminsert' option. When starting to enter a normal command line (not a
search pattern) the mappings are disabled until a CTRL-^ is typed. The state
last used is remembered for Insert mode and Search patterns separately. The
state for Insert mode is also used when typing a character as an argument to
command like "f" or "t".
Language mappings will never be applied to already mapped characters. They
are only used for typed characters. This assumes that the language mapping
was already done when typing the mapping.
1.4 LISTING MAPPINGS *map-listing*
When listing mappings the characters in the first two columns are:
CHAR MODE ~
<Space> Normal, Visual, Select and Operator-pending
n Normal
v Visual and Select
s Select
x Visual
o Operator-pending
! Insert and Command-line
i Insert
l ":lmap" mappings for Insert, Command-line and Lang-Arg
c Command-line
t Terminal-Job
Just before the {rhs} a special character can appear:
* indicates that it is not remappable
& indicates that only script-local mappings are remappable
@ indicates a buffer-local mapping
Everything from the first non-blank after {lhs} up to the end of the line
(or '|') is considered to be part of {rhs}. This allows the {rhs} to end
with a space.
Note: When using mappings for Visual mode, you can use the "'<" mark, which
is the start of the last selected Visual area in the current buffer |'<|.
The |:filter| command can be used to select what mappings to list. The
pattern is matched against the {lhs} and {rhs} in the raw form.
While mappings are being listed, it is not possible to add or clear mappings,
e.g. from a timer callback. *E1309*
*:map-verbose*
When 'verbose' is non-zero, the detected and used 'keyprotocol' value will be
displayed in the first line. Also a key map will also display where it was
last defined. Example: >
:verbose map <C-W>*
Kitty keyboard protocol: Cleared
n <C-W>* * <C-W><C-S>*
Last set from /home/abcd/.vimrc
See |:verbose-cmd| for more information.
1.5 MAPPING SPECIAL KEYS *:map-special-keys*
There are three ways to map a special key:
1. The Vi-compatible method: Map the key code. Often this is a sequence that
starts with <Esc>. To enter a mapping like this you type ":map " and then
you have to type CTRL-V before hitting the function key. Note that when
the key code for the key is in the termcap (the t_ options), it will
automatically be translated into the internal code and become the second
way of mapping (unless the 'k' flag is included in 'cpoptions').
2. The second method is to use the internal code for the function key. To
enter such a mapping type CTRL-K and then hit the function key, or use
the form "#1", "#2", .. "#9", "#0", "<Up>", "<S-Down>", "<S-F7>", etc.
(see table of keys |key-notation|, all keys from <Up> can be used). The
first ten function keys can be defined in two ways: Just the number, like
"#2", and with "<F>", like "<F2>". Both stand for function key 2. "#0"
refers to function key 10, defined with option 't_f10', which may be
function key zero on some keyboards. The <> form cannot be used when
'cpoptions' includes the '<' flag.
3. Use the termcap entry, with the form <t_xx>, where "xx" is the name of the
termcap entry. Any string entry can be used. For example: >
:map <t_F3> G
< Maps function key 13 to "G". This does not work if 'cpoptions' includes
the '<' flag.
The advantage of the second and third method is that the mapping will work on
different terminals without modification (the function key will be
translated into the same internal code or the actual key code, no matter what
terminal you are using. The termcap must be correct for this to work, and you
must use the same mappings).
DETAIL: Vim first checks if a sequence from the keyboard is mapped. If it
isn't the terminal key codes are tried (see |terminal-options|). If a
terminal code is found it is replaced with the internal code. Then the check
for a mapping is done again (so you can map an internal code to something
else). What is written into the script file depends on what is recognized.
If the terminal key code was recognized as a mapping the key code itself is
written to the script file. If it was recognized as a terminal code the
internal code is written to the script file.
1.6 SPECIAL CHARACTERS *:map-special-chars*
*map_backslash* *map-backslash*
Note that only CTRL-V is mentioned here as a special character for mappings
and abbreviations. When 'cpoptions' does not contain 'B', a backslash can
also be used like CTRL-V. The <> notation can be fully used then |<>|. But
you cannot use "<C-V>" like CTRL-V to escape the special meaning of what
follows.
To map a backslash, or use a backslash literally in the {rhs}, the special
sequence "<Bslash>" can be used. This avoids the need to double backslashes
when using nested mappings.
*map_CTRL-C* *map-CTRL-C*
Using CTRL-C in the {lhs} is possible, but it will only work when Vim is
waiting for a key, not when Vim is busy with something. When Vim is busy
CTRL-C interrupts/breaks the command.
When using the GUI version on MS-Windows CTRL-C can be mapped to allow a Copy
command to the clipboard. Use CTRL-Break to interrupt Vim.
*map_space_in_lhs* *map-space_in_lhs*
To include a space in {lhs} precede it with a CTRL-V (type two CTRL-Vs for
each space).
*map_space_in_rhs* *map-space_in_rhs*
If you want a {rhs} that starts with a space, use "<Space>". To be fully Vi
compatible (but unreadable) don't use the |<>| notation, precede {rhs} with a
single CTRL-V (you have to type CTRL-V two times).
*map_empty_rhs* *map-empty-rhs*
You can create an empty {rhs} by typing nothing after a single CTRL-V (you
have to type CTRL-V two times). Unfortunately, you cannot do this in a vimrc
file.
*<Nop>*
An easier way to get a mapping that doesn't produce anything, is to use
"<Nop>" for the {rhs}. This only works when the |<>| notation is enabled.
For example, to make sure that function key 8 does nothing at all: >
:map <F8> <Nop>
:map! <F8> <Nop>
<
*map-multibyte*
It is possible to map multibyte characters, but only the whole character. You
cannot map the first byte only. This was done to prevent problems in this
scenario: >
:set encoding=latin1
:imap <M-C> foo
:set encoding=utf-8
The mapping for <M-C> is defined with the latin1 encoding, resulting in a 0xc3
byte. If you type the character á (0xe1 <M-a>) in UTF-8 encoding this is the
two bytes 0xc3 0xa1. You don't want the 0xc3 byte to be mapped then or
otherwise it would be impossible to type the á character.
*<Leader>* *mapleader*
To define a mapping which uses the "g:mapleader" variable, the special string
"<Leader>" can be used. It is replaced with the string value of
"g:mapleader". If "g:mapleader" is not set or empty, a backslash is used
instead. Example: >
map <Leader>A oanother line<Esc>
Works like: >
map \A oanother line<Esc>
But after (legacy script): >
let mapleader = ","
Or (Vim9 script): >
g:mapleader = ","
It works like: >
map ,A oanother line<Esc>
Note that the value of "g:mapleader" is used at the moment the mapping is
defined. Changing "g:mapleader" after that has no effect for already defined
mappings.
*<LocalLeader>* *maplocalleader*
<LocalLeader> is just like <Leader>, except that it uses "maplocalleader"
instead of "mapleader". <LocalLeader> is to be used for mappings which are
local to a buffer. Example: >
:map <buffer> <LocalLeader>A oanother line<Esc>
<
In a global plugin <Leader> should be used and in a filetype plugin
<LocalLeader>. "mapleader" and "maplocalleader" can be equal. Although, if
you make them different, there is a smaller chance of mappings from global
plugins to clash with mappings for filetype plugins. For example, you could
keep "mapleader" at the default backslash, and set "maplocalleader" to an
underscore.
*map-<SID>*
In a script the special key name "<SID>" can be used to define a mapping
that's local to the script. See |<SID>| for details.
*<Plug>*
The special key name "<Plug>" can be used for an internal mapping, which is
not to be matched with any key sequence. This is useful in plugins
|using-<Plug>|.
*<MouseMove>*
The special key name "<MouseMove>" can be used to handle mouse movement. It
needs to be enabled with 'mousemoveevent'. Currently only works in the GUI.
The |getmousepos()| function can be used to obtain the mouse position.
*<Char>* *<Char->*
To map a character by its decimal, octal or hexadecimal number the <Char>
construct can be used:
<Char-123> character 123
<Char-033> character 27
<Char-0x7f> character 127
<S-Char-114> character 114 ('r') shifted ('R')
This is useful to specify a (multibyte) character in a 'keymap' file.
Upper and lowercase differences are ignored.
*map-comments*
It is not possible to put a comment after these commands, because the '"'
character is considered to be part of the {lhs} or {rhs}. However, one can
use |", since this starts a new, empty command with a comment.
*map_bar* *map-bar*
Since the '|' character is used to separate a map command from the next
command, you will have to do something special to include a '|' in {rhs}.
There are three methods:
use works when example ~
<Bar> '<' is not in 'cpoptions' :map _l :!ls <Bar> more^M
\| 'b' is not in 'cpoptions' :map _l :!ls \| more^M
^V| always, in Vim and Vi :map _l :!ls ^V| more^M
(here ^V stands for CTRL-V; to get one CTRL-V you have to type it twice; you
cannot use the <> notation "<C-V>" here).
All three work when you use the default setting for 'cpoptions'.
When 'b' is present in 'cpoptions', "\|" will be recognized as a mapping
ending in a '\' and then another command. This is Vi compatible, but
illogical when compared to other commands.
*map_return* *map-return*
When you have a mapping that contains an Ex command, you need to put a line
terminator after it to have it executed. The use of <CR> is recommended for
this (see |<>|). Example: >
:map _ls :!ls -l %:S<CR>:echo "the end"<CR>
To avoid mapping of the characters you type in insert or Command-line mode,
type a CTRL-V first. The mapping in Insert mode is disabled if the 'paste'
option is on.
*map-error*
Note that when an error is encountered (that causes an error message or might
cause a beep) the rest of the mapping is not executed. This is Vi-compatible.
Note that the second character (argument) of the commands @zZtTfF[]rm'`"v
and CTRL-X is not mapped. This was done to be able to use all the named
registers and marks, even when the command with the same name has been
mapped.
1.7 WHAT KEYS TO MAP *map-which-keys*
If you are going to map something, you will need to choose which key(s) to use
for the {lhs}. You will have to avoid keys that are used for Vim commands,
otherwise you would not be able to use those commands anymore. Here are a few
suggestions:
- Function keys <F2>, <F3>, etc.. Also the shifted function keys <S-F1>,
<S-F2>, etc. Note that <F1> is already used for the help command.
- Any key with the Alt or Meta key pressed. Depending on your keyboard
accented characters may be used as well. |:map-alt-keys|
- Use the '_' or ',' character and then any other character. The "_" and ","
commands do exist in Vim (see |_| and |,|), but you probably never use them.
- Use a key that is a synonym for another command. For example: CTRL-P and
CTRL-N. Use an extra character to allow more mappings.
- The key defined by <Leader> and one or more other keys. This is especially
useful in scripts. |mapleader|
See the file "index" for keys that are not used and thus can be mapped without
losing any builtin function. You can also use ":help {key}^D" to find out if
a key is used for some command. ({key} is the specific key you want to find
out about, ^D is CTRL-D).
1.8 EXAMPLES *map-examples*
A few examples (given as you type them, for "<CR>" you type four characters;
the '<' flag must not be present in 'cpoptions' for this to work). >
:map <F3> o#include
:map <M-g> /foo<CR>cwbar<Esc>
:map _x d/END/e<CR>
:map! qq quadrillion questions
Multiplying a count
When you type a count before triggering a mapping, it's like the count was
typed before the {lhs}. For example, with this mapping: >
:map <F4> 3w
Typing 2<F4> will result in "23w". Thus not moving 2 * 3 words but 23 words.
If you want to multiply counts use the expression register: >
:map <F4> @='3w'<CR>
The part between quotes is the expression being executed. |@=|
1.9 USING MAPPINGS *map-typing*
Vim will compare what you type with the start of a mapped sequence. If there
is an incomplete match, it will get more characters until there either is a
complete match or until there is no match at all. Example: If you map! "qq",
the first 'q' will not appear on the screen until you type another
character. This is because Vim cannot know if the next character will be a
'q' or not. If the 'timeout' option is on (which is the default) Vim will
only wait for one second (or as long as specified with the 'timeoutlen'
option). After that it assumes that the 'q' is to be interpreted as such. If
you type slowly, or your system is slow, reset the 'timeout' option. Then you
might want to set the 'ttimeout' option.
*map-precedence*
Buffer-local mappings (defined using |:map-<buffer>|) take precedence over
global mappings. When a buffer-local mapping is the same as a global mapping,
Vim will use the buffer-local mapping. In addition, Vim will use a complete
mapping immediately if it was defined with <nowait>, even if a longer mapping
has the same prefix. For example, given the following two mappings: >
:map <buffer> <nowait> \a :echo "Local \a"<CR>
:map \abc :echo "Global \abc"<CR>
When typing \a the buffer-local mapping will be used immediately. Vim will
not wait for more characters to see if the user might be typing \abc.
*map-keys-fails*
There are situations where key codes might not be recognized:
- Vim can only read part of the key code. Mostly this is only the first
character. This happens on some Unix versions in an xterm.
- The key code is after character(s) that are mapped. E.g., "<F1><F1>" or
"g<F1>".
The result is that the key code is not recognized in this situation, and the
mapping fails. There are two actions needed to avoid this problem:
- Remove the 'K' flag from 'cpoptions'. This will make Vim wait for the rest
of the characters of the function key.
- When using <F1> to <F4> the actual key code generated may correspond to
<xF1> to <xF4>. There are mappings from <xF1> to <F1>, <xF2> to <F2>, etc.,
but these are not recognized after another half a mapping. Make sure the
key codes for <F1> to <F4> are correct: >
:set <F1>=<type CTRL-V><type F1>
< Type the <F1> as four characters. The part after the "=" must be done with
the actual keys, not the literal text.
Another solution is to use the actual key code in the mapping for the second
special key: >
:map <F1><Esc>OP :echo "yes"<CR>
Don't type a real <Esc>, Vim will recognize the key code and replace it with
<F1> anyway.
Another problem may be that when keeping ALT or Meta pressed the terminal
prepends ESC instead of setting the 8th bit. See |:map-alt-keys|.
*recursive_mapping*
If you include the {lhs} in the {rhs} you have a recursive mapping. When
{lhs} is typed, it will be replaced with {rhs}. When the {lhs} which is
included in {rhs} is encountered it will be replaced with {rhs}, and so on.
This makes it possible to repeat a command an infinite number of times. The
only problem is that the only way to stop this is by causing an error. The
macros to solve a maze uses this, look there for an example. There is one
exception: If the {rhs} starts with {lhs}, the first character is not mapped
again (this is Vi compatible).
For example: >
:map ab abcd
will execute the "a" command and insert "bcd" in the text. The "ab" in the
{rhs} will not be mapped again.
If you want to exchange the meaning of two keys you should use the :noremap
command. For example: >
:noremap k j
:noremap j k
This will exchange the cursor up and down commands.
With the normal :map command, when the 'remap' option is on, mapping takes
place until the text is found not to be a part of a {lhs}. For example, if
you use: >
:map x y
:map y x
Vim will replace x with y, and then y with x, etc. When this has happened
'maxmapdepth' times (default 1000), Vim will give the error message
"recursive mapping".
*:map-undo*
If you include an undo command inside a mapped sequence, this will bring the
text back in the state before executing the macro. This is compatible with
the original Vi, as long as there is only one undo command in the mapped
sequence (having two undo commands in a mapped sequence did not make sense
in the original Vi, you would get back the text before the first undo).
1.10 MAPPING ALT-KEYS *:map-alt-keys*
For a readable mapping command the <A-k> form can be used. Note that <A-k>
and <A-K> are different, the latter will use an upper case letter. Actually,
<A-K> and <A-S-K> are the same. Instead of "A" you can use "M". If you have
an actual Meta modifier key, please see |:map-meta-keys|.
In the GUI Vim handles the Alt key itself, thus mapping keys with ALT should
always work. But in a terminal Vim gets a sequence of bytes and has to figure
out whether ALT was pressed or not.
If the terminal supports the modifyOtherKeys mode and it has been enabled,
then Vim can recognize more key combinations, see |modifyOtherKeys| below.
The Kitty keyboard protocol works in a similar way, see
|kitty-keyboard-protocol|.
By default Vim assumes that pressing the ALT key sets the 8th bit of a typed
character. Most decent terminals can work that way, such as xterm, aterm and
rxvt. If your <A-k> mappings don't work it might be that the terminal is
prefixing the character with an ESC character. But you can just as well type
ESC before a character, thus Vim doesn't know what happened (except for
checking the delay between characters, which is not reliable).
As of this writing, some mainstream terminals like gnome-terminal and konsole
use the ESC prefix. There doesn't appear a way to have them use the 8th bit
instead. Xterm should work well by default. Aterm and rxvt should work well
when started with the "--meta8" argument. You can also tweak resources like
"metaSendsEscape", "eightBitInput" and "eightBitOutput".
On the Linux console, this behavior can be toggled with the "setmetamode"
command. Bear in mind that not using an ESC prefix could get you in trouble
with other programs. You should make sure that bash has the "convert-meta"
option set to "on" in order for your Meta keybindings to still work on it
(it's the default readline behavior, unless changed by specific system
configuration). For that, you can add the line: >
set convert-meta on
to your ~/.inputrc file. If you're creating the file, you might want to use: >
$include /etc/inputrc
as the first line, if that file exists on your system, to keep global options.
This may cause a problem for entering special characters, such as the umlaut.
Then you should use CTRL-V before that character.
Bear in mind that convert-meta has been reported to have troubles when used in
UTF-8 locales. On terminals like xterm, the "metaSendsEscape" resource can be
toggled on the fly through the "Main Options" menu, by pressing Ctrl-LeftClick
on the terminal; that's a good last resource in case you want to send ESC when
using other applications but not when inside Vim.
1.11 MAPPING META-KEYS *:map-meta-keys*
Mapping keys with the Meta modifier works very similar to using the Alt key.
What key on your keyboard produces the Meta modifier depends on your keyboard
and configuration.
Note that mapping <M-a> actually is for using the Alt key. That can be
confusing! It cannot be changed, it would not be backwards compatible.
For the Meta modifier the "T" character is used. For example, to map Meta-b
in Insert mode: >
:imap <T-b> terrible
1.12 MAPPING SUPER-KEYS or COMMAND-KEYS *:map-super-keys* *:map-cmd-key*
The Super modifier is available in GUI mode (when |gui_running| is 1) for gVim
on Linux and MacVim on Mac OS. If you're on a Mac, this represents the Command
key, on Linux with the GTK GUI it represents the Super key.
The character "D" is used for the Super / Command modifier.
For example, to map Command-b in Insert mode: >
:imap <D-b> barritone
1.13 MAPPING IN modifyOtherKeys mode *modifyOtherKeys*
Xterm and a few other terminals can be put in a mode where keys with modifiers
are sent with a special escape code. Vim recognizes these codes and can then
make a difference between CTRL-H and Backspace, even when Backspace sends the
character 8. And many more special keys, such as Tab and CTRL-I, which cannot
be mapped separately otherwise.
For xterm modifyOtherKeys is enabled in the builtin termcap entry. If this is
not used you can enable modifyOtherKeys with these lines in your vimrc: >
let &t_TI = "\<Esc>[>4;2m"
let &t_TE = "\<Esc>[>4;m"
This sets modifyOtherKeys to level 2. Note that modifyOtherKeys level 1 does
not work. Some terminals do not support level 2 and then send key codes that
Vim will not be able to correctly recognize.
In case the modifyOtherKeys mode causes problems you can disable it: >
let &t_TI = ""
let &t_TE = ""
It does not take effect immediately. To have this work without restarting Vim
execute a shell command, e.g.: `!ls` Or put the lines in your |vimrc|.
When modifyOtherKeys is enabled you can map <C-[> and <C-S-{>: >
imap <C-[> [[[
imap <C-{> {{{
Without modifyOtherKeys <C-[> and <C-{> are indistinguishable from Esc.
Note that <C-{> is used and not <C-S-[> or <C-S-{>. This works on most
keyboards. Similarly, <C-}> is used instead of <C-S-]> or <C-S-}> and
<C-|> instead of <C-S-\> or <C-S-|>. Note that '|' has a special meaning in a
mapping, see |map-bar|.
WARNING: if you map <C-[> you may very well break any key codes that start
with Esc. Make sure it comes AFTER other mappings.
Starting with xterm version 377 Vim can detect the modifyOtherKeys state by
requesting it. For this the 't_RK' termcap entry is used. When the response
is found then Vim will know whether modifyOtherKeys level 2 is enabled, and
handle mappings accordingly.
Before version 377 Vim automatically detects if the modifyOtherKeys mode was
enabled when it spots an escape sequence that must have been created by it.
To see if Vim detected such an escape sequence use `:verbose map`, the first
line will then show "Seen modifyOtherKeys: true" (possibly translated).
This automatic detection depends on receiving an escape code starting with
"<1b>[27;". This is the normal way xterm sends these key codes. However, if
the *formatOtherKeys* resource is set another form is used that is not
recognized, therefore you must not set formatOtherKeys.
A known side effect is that in Insert mode the raw escape sequence is inserted
after the CTRL-V key. This can be used to check whether modifyOtherKeys is
enabled: In Insert mode type CTRL-SHIFT-V CTRL-V, if you get one byte then
modifyOtherKeys is off, if you get <1b>[27;5;118~ then it is on.
Note that xterm up to version 376 has a bug that makes Shift-Esc send a
regular Esc code, the Shift modifier is dropped.
When the 'esckeys' option is off, then modifyOtherKeys will be disabled in
Insert mode to avoid every key with a modifier causing Insert mode to end.
1.14 MAPPING WITH KITTY KEYBOARD PROTOCOL *kitty-keyboard-protocol*
If the value of 'term' contains "kitty" then Vim will send out an escape
sequence to enable the Kitty keyboard protocol. This can be changed with the
'keyprotocol' option.
Like modifyOtherKeys, this will make it possible to distinguish between more
keys with modifiers. Also, this protocol sends an escape sequence for the Esc
key, so that Vim does not need to use a timeout to know whether receiving an
Esc character means the Esc key was pressed or it's the start of an escape
sequence.
Vim automatically detects if the Kitty keyboard protocol was enabled when it
spots the response to the status request (this should be part of the |t_TI|
termcap entry). To see if Vim detected such an escape sequence use: >
:verbose map
The first line will then show "Kitty keyboard protocol: {value}" (possibly
translated). The meaning of {value}:
Unknown no status received yet
Off protocol is not used
On protocol is used
Disabled protocol was used but expected to have been disabled
by 't_TE'
Cleared protocol expected to have been disabled by 't_TE',
previous state is unknown
1.15 MAPPING AN OPERATOR *:map-operator*
An operator is used before a {motion} command. To define your own operator
you must create a mapping that first sets the 'operatorfunc' option and then
invoke the |g@| operator. After the user types the {motion} command the
specified function will be called.
*g@* *E774* *E775*
g@{motion} Call the function set by the 'operatorfunc' option.
The '[ mark is positioned at the start of the text
moved over by {motion}, the '] mark on the last
character of the text.
The function is called with one String argument:
"line" {motion} was |linewise|
"char" {motion} was |characterwise|
"block" {motion} was |blockwise-visual|
The type can be forced, see |forced-motion|.
{not available when compiled without the |+eval|
feature}
Here is an example that counts the number of spaces with <F4>: >
nnoremap <expr> <F4> CountSpaces()
xnoremap <expr> <F4> CountSpaces()
" doubling <F4> works on a line
nnoremap <expr> <F4><F4> CountSpaces() .. '_'
function CountSpaces(context = {}, type = '') abort
if a:type == ''
let context = #{
\ dot_command: v:false,
\ extend_block: '',
\ virtualedit: [&l:virtualedit, &g:virtualedit],
\ }
let &operatorfunc = function('CountSpaces', [context])
set virtualedit=block
return 'g@'
endif
let save = #{
\ clipboard: &clipboard,
\ selection: &selection,
\ virtualedit: [&l:virtualedit, &g:virtualedit],
\ register: getreginfo('"'),
\ visual_marks: [getpos("'<"), getpos("'>")],
\ }
try
set clipboard= selection=inclusive virtualedit=
let commands = #{
\ line: "'[V']",
\ char: "`[v`]",
\ block: "`[\<C-V>`]",
\ }[a:type]
let [_, _, col, off] = getpos("']")
if off != 0
let vcol = getline("'[")->strpart(0, col + off)->strdisplaywidth()
if vcol >= [line("'["), '