💾 Archived View for gmi.noulin.net › rfc › rfc6114.gmi captured on 2024-09-29 at 04:52:24. Gemini links have been rewritten to link to archived content
⬅️ Previous capture (2022-01-08)
-=-=-=-=-=-=-
Keywords: security, lightweight cryptography, encryption algorithm
Independent Submission M. Katagi Request for Comments: 6114 S. Moriai Category: Informational Sony Corporation ISSN: 2070-1721 March 2011 The 128-Bit Blockcipher CLEFIA Abstract This document describes the specification of the blockcipher CLEFIA. CLEFIA is a 128-bit blockcipher, with key lengths of 128, 192, and 256 bits, which is compatible with the interface of the Advanced Encryption Standard (AES). The algorithm of CLEFIA was published in 2007, and its security has been scrutinized in the public community. CLEFIA is one of the new-generation lightweight blockcipher algorithms designed after AES. Among them, CLEFIA offers high performance in software and hardware as well as lightweight implementation in hardware. CLEFIA will be of benefit to the Internet, which will be connected to more distributed and constrained devices. Status of This Memo This document is not an Internet Standards Track specification; it is published for informational purposes. This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen to publish this document at its discretion and makes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6114. Katagi & Moriai Informational [Page 1] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Copyright Notice Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Table of Contents 1. Introduction ....................................................3 2. Notations .......................................................3 3. CLEFIA Algorithm ................................................4 4. CLEFIA Building Blocks ..........................................4 4.1. GFN_{d,r} ..................................................4 4.2. F-Functions ................................................6 4.3. S-Boxes ....................................................7 4.4. Diffusion Matrices .........................................9 5. Data Processing Part ............................................9 5.1. Encryption/Decryption ......................................9 5.2. The Numbers of Rounds .....................................10 6. Key Scheduling Part ............................................10 6.1. DoubleSwap Function .......................................10 6.2. Overall Structure .........................................11 6.3. Key Scheduling for a 128-Bit Key ..........................11 6.4. Key Scheduling for a 192-Bit Key ..........................11 6.5. Key Scheduling for a 256-Bit Key ..........................12 6.6. Constant Values ...........................................13 7. Security Considerations ........................................18 8. Informative References .........................................18 Appendix A. Test Vectors ..........................................19 Appendix B. Test Vectors (Intermediate Values) ....................19 Katagi & Moriai Informational [Page 2] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 1. Introduction Due to the widespread use of the Internet, devices with limited capabilities, e.g., wireless sensors, are connected to the network. In order to realize enough security for the network, cryptographic technologies suitable for such constrained devices are very important. This recent technology is called "lightweight cryptography", and the demand for lightweight cryptography is increasing. In order to satisfy these needs, a 128-bit blockcipher, CLEFIA, was designed based on state-of-the-art techniques [FSE07]. CLEFIA is a 128-bit blockcipher, with key lengths of 128, 192, and 256 bits, which is compatible with the interface of AES [FIPS-197]. Since the cipher algorithm was published in 2007, its security has been scrutinized in the public community, but no security weaknesses have been reported so far. CLEFIA is a lightweight blockcipher, since it can be implemented within 3 Kgates using a 0.13-um standard Complementary Metal Oxide Semiconductor (CMOS) Application-Specific Integrated Circuit (ASIC) library. Many of the lightweight cryptographic algorithms sacrifice security and/or speed; however, CLEFIA provides high-level security of 128, 192, and 256 bits and high performance in software and hardware. CLEFIA will be of benefit to the Internet, which will be connected to more distributed and resource-constrained devices. CLEFIA is proposed in ISO/IEC 29192-2 [ISO29192-2] and the CRYPTREC project for the revision of the e-Government recommended ciphers list in Japan [CRYPTREC]. Further information about CLEFIA, including reference implementation, test vectors, and security and performance evaluation, is available from http://www.sony.net/clefia/. 2. Notations This section describes mathematical notations, conventions, and symbols used throughout this document. 0x : A prefix for a binary string in hexadecimal form a|b or (a|b) : Concatenation of a and b (a,b) or (a b) : Vector style representation of a|b a <- b : Updating a value of a by a value of b trans(a) : Transposition of a vector or a matrix a a XOR b : Bitwise exclusive-OR operation Katagi & Moriai Informational [Page 3] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 ~a : Logical negation a <<< b : b-bit left cyclic shift operation a ^ b : a raised to the power of b a * b : Multiplication in GF(2^n) over a defined polynomial 3. CLEFIA Algorithm The CLEFIA algorithm consists of two parts: a data processing part and a key scheduling part. The data processing part of CLEFIA consists of functions ENCr for encryption and DECr for decryption. The encryption/decryption process is as follows: Step 1. Key scheduling Step 2. Encrypting/decrypting each block of data using ENCr/DECr The process of the key scheduling is described in Section 6, and the definitions of ENCr and DECr are explained in Section 5. CLEFIA supports 128-bit, 192-bit, and 256-bit keys, and the key scheduling and ENCr/DECr should be appropriately selected for its key length. 4. CLEFIA Building Blocks 4.1. GFN_{d,r} We first define the function GFN_{d,r}, which is a fundamental structure for CLEFIA, and then define a data processing part and a key scheduling part. CLEFIA uses a 4-branch and an 8-branch generalized Feistel network. The 4-branch generalized Feistel network is used in the data processing part and the key scheduling for a 128-bit key. The 8-branch generalized Feistel network is applied in the key scheduling for a 192-bit/256-bit key. We denote the d-branch r-round generalized Feistel network employed in CLEFIA as GFN_{d,r}. For d pairs of 32-bit inputs Xi and outputs Yi (0 <= i < d), and dr/2 32-bit round keys RK_{i} (0 <= i < dr/2), GFN_{d,r} (d = 4,8) is defined as follows. Katagi & Moriai Informational [Page 4] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 GFN_{4,r}(RK_{0}, ..., RK_{2r-1}, X0, X1, X2, X3) input : 32-bit round keys RK_{0}, ..., RK_{2r-1}, 32-bit data X0, X1, X2, X3, output: 32-bit data Y0, Y1, Y2, Y3 Step 1. T0 | T1 | T2 | T3 <- X0 | X1 | X2 | X3 Step 2. For i = 0 to r - 1 do the following: Step 2.1. T1 <- T1 XOR F0(RK_{2i},T0), T3 <- T3 XOR F1(RK_{2i + 1}, T2) Step 2.2. T0 | T1 | T2 | T3 <- T1 | T2 | T3 | T0 Step 3. Y0 | Y1 | Y2 | Y3 <- T3 | T0 | T1 | T2 GFN_{8,r}(RK_{0}, ..., RK_{4r-1}, X0, X1, ..., X7) input : 32-bit round keys RK_{0}, ..., RK_{4r-1}, 32-bit data X0, X1, X2, X3, X4, X5, X6, X7, output: 32-bit data Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7 Step 1. T0 | T1 | ... | T7 <- X0 | X1 | ... | X7 Step 2. For i = 0 to r - 1 do the following: Step 2.1. T1 <- T1 XOR F0(RK_{4i}, T0), T3 <- T3 XOR F1(RK_{4i + 1}, T2), T5 <- T5 XOR F0(RK_{4i + 2}, T4), T7 <- T7 XOR F1(RK_{4i + 3}, T6) Step 2.2. T0 | T1 | ... | T6 | T7 <- T1 | T2 | ... | T7 | T0 Step 3. Y0 | Y1 | ... | Y6 | Y7 <- T7 | T0 | ... | T5 | T6 The inverse function GFNINV_{4,r} is obtained by changing the order of RK_{i} and the direction of word rotation at Step 2.2 and Step 3 in GFN_{4,r}. Katagi & Moriai Informational [Page 5] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 GFNINV_{4,r}(RK_{0}, ..., RK_{2r-1}, X0, X1, X2, X3) input : 32-bit round keys RK_{0}, ..., RK_{2r-1}, 32-bit data X0, X1, X2, X3, output: 32-bit data Y0, Y1, Y2, Y3 Step 1. T0 | T1 | T2 | T3 <- X0 | X1 | X2 | X3 Step 2. For i = 0 to r - 1 do the following: Step 2.1. T1 <- T1 XOR F0(RK_{2(r - i) - 2}, T0), T3 <- T3 XOR F1(RK_{2(r - i) - 1}, T2) Step 2.2. T0 | T1 | T2 | T3 <- T3 | T0 | T1 | T2 Step 3. Y0 | Y1 | Y2 | Y3 <- T1 | T2 | T3 | T0 4.2. F-Functions Two F-functions F0 and F1 used in GFN_{d,r} are defined as follows: F0(RK, x) input : 32-bit round key RK, 32-bit data x, output: 32-bit data y Step 1. T <- RK XOR x Step 2. Let T = T0 | T1 | T2 | T3, where Ti is 8-bit data, T0 <- S0(T0), T1 <- S1(T1), T2 <- S0(T2), T3 <- S1(T3) Step 3. Let y = y0 | y1 | y2 | y3, where yi is 8-bit data, y <- M0 trans((T0, T1, T2, T3)) Katagi & Moriai Informational [Page 6] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 F1(RK, x) input : 32-bit round key RK, 32-bit data x, output: 32-bit data y Step 1. T <- RK XOR x Step 2. Let T = T0 | T1 | T2 | T3, where Ti is 8-bit data, T0 <- S1(T0), T1 <- S0(T1), T2 <- S1(T2), T3 <- S0(T3) Step 3. Let y = y0 | y1 | y2 | y3, where yi is 8-bit data, y <- M1 trans((T0, T1, T2, T3)) S0 and S1 are nonlinear 8-bit S-boxes, and M0 and M1 are 4x4 diffusion matrices described in the following section. In each F-function, two S-boxes are used in the different order, and a different matrix is used. 4.3. S-Boxes CLEFIA employs two different types of 8-bit S-boxes: S0 is based on four 4-bit S-boxes, and S1 is based on the inverse function over GF(2^8) [CLEFIA1]. Tables 1 and 2 show the output values of S0 and S1, respectively. In these tables, all values are expressed in hexadecimal form. For an 8-bit input of an S-box, the upper 4 bits indicate a row and the lower 4 bits indicate a column. For example, if a value 0xab is input, 0x7e is output by S0 because it is on the cross line of the row indexed by "a." and the column indexed by ".b". Katagi & Moriai Informational [Page 7] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Table 1: S-Box S0 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f 0. 57 49 d1 c6 2f 33 74 fb 95 6d 82 ea 0e b0 a8 1c 1. 28 d0 4b 92 5c ee 85 b1 c4 0a 76 3d 63 f9 17 af 2. bf a1 19 65 f7 7a 32 20 06 ce e4 83 9d 5b 4c d8 3. 42 5d 2e e8 d4 9b 0f 13 3c 89 67 c0 71 aa b6 f5 4. a4 be fd 8c 12 00 97 da 78 e1 cf 6b 39 43 55 26 5. 30 98 cc dd eb 54 b3 8f 4e 16 fa 22 a5 77 09 61 6. d6 2a 53 37 45 c1 6c ae ef 70 08 99 8b 1d f2 b4 7. e9 c7 9f 4a 31 25 fe 7c d3 a2 bd 56 14 88 60 0b 8. cd e2 34 50 9e dc 11 05 2b b7 a9 48 ff 66 8a 73 9. 03 75 86 f1 6a a7 40 c2 b9 2c db 1f 58 94 3e ed a. fc 1b a0 04 b8 8d e6 59 62 93 35 7e ca 21 df 47 b. 15 f3 ba 7f a6 69 c8 4d 87 3b 9c 01 e0 de 24 52 c. 7b 0c 68 1e 80 b2 5a e7 ad d5 23 f4 46 3f 91 c9 d. 6e 84 72 bb 0d 18 d9 96 f0 5f 41 ac 27 c5 e3 3a e. 81 6f 07 a3 79 f6 2d 38 1a 44 5e b5 d2 ec cb 90 f. 9a 36 e5 29 c3 4f ab 64 51 f8 10 d7 bc 02 7d 8e Table 2: S-Box S1 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f 0. 6c da c3 e9 4e 9d 0a 3d b8 36 b4 38 13 34 0c d9 1. bf 74 94 8f b7 9c e5 dc 9e 07 49 4f 98 2c b0 93 2. 12 eb cd b3 92 e7 41 60 e3 21 27 3b e6 19 d2 0e 3. 91 11 c7 3f 2a 8e a1 bc 2b c8 c5 0f 5b f3 87 8b 4. fb f5 de 20 c6 a7 84 ce d8 65 51 c9 a4 ef 43 53 5. 25 5d 9b 31 e8 3e 0d d7 80 ff 69 8a ba 0b 73 5c 6. 6e 54 15 62 f6 35 30 52 a3 16 d3 28 32 fa aa 5e 7. cf ea ed 78 33 58 09 7b 63 c0 c1 46 1e df a9 99 8. 55 04 c4 86 39 77 82 ec 40 18 90 97 59 dd 83 1f 9. 9a 37 06 24 64 7c a5 56 48 08 85 d0 61 26 ca 6f a. 7e 6a b6 71 a0 70 05 d1 45 8c 23 1c f0 ee 89 ad b. 7a 4b c2 2f db 5a 4d 76 67 17 2d f4 cb b1 4a a8 c. b5 22 47 3a d5 10 4c 72 cc 00 f9 e0 fd e2 fe ae d. f8 5f ab f1 1b 42 81 d6 be 44 29 a6 57 b9 af f2 e. d4 75 66 bb 68 9f 50 02 01 3c 7f 8d 1a 88 bd ac f. f7 e4 79 96 a2 fc 6d b2 6b 03 e1 2e 7d 14 95 1d Katagi & Moriai Informational [Page 8] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 4.4. Diffusion Matrices The multiplications of a diffusion matrix M0 or M1, and a vector T in Section 4.2, are obtained as follows. y = M0 trans((T0, T1, T2, T3)): y0 = T0 XOR (0x02 * T1) XOR (0x04 * T2) XOR (0x06 * T3), y1 = (0x02 * T0) XOR T1 XOR (0x06 * T2) XOR (0x04 * T3), y2 = (0x04 * T0) XOR (0x06 * T1) XOR T2 XOR (0x02 * T3), y3 = (0x06 * T0) XOR (0x04 * T1) XOR (0x02 * T2) XOR T3 y = M1 trans((T0, T1, T2, T3)): y0 = T0 XOR (0x08 * T1) XOR (0x02 * T2) XOR (0x0a * T3), y1 = (0x08 * T0) XOR T1 XOR (0x0a * T2) XOR (0x02 * T3), y2 = (0x02 * T0) XOR (0x0a * T1) XOR T2 XOR (0x08 * T3), y3 = (0x0a * T0) XOR (0x02 * T1) XOR (0x08 * T2) XOR T3 In the above equations, * denotes a multiplication in GF(2^8) defined by the lexicographically first primitive polynomial z^8 + z^4 + z^3 + z^2 + 1. The constants 0x02, 0x04, 0x06, 0x08, and 0x0a are represented in hexadecimal form of finite field polynomials. For example, 0x02 identifies the finite field element z. 8-bit data Ti is also interpreted as a finite field element. The mathematical background of two diffusion matrices and their choices are explained in [CLEFIA2]. 5. Data Processing Part 5.1. Encryption/Decryption The data processing part of CLEFIA consists of ENCr for encryption and DECr for decryption. ENCr and DECr are based on the 4-branch generalized Feistel structure GFN_{4,r}. Let P,C be 128-bit plaintext and ciphertext, and let Pi, Ci (0 <= i < 4) be divided 32-bit plaintexts and ciphertexts where P = P0 | P1 | P2 | P3 and C = C0 | C1 | C2 | C3, and let WK0, WK1, WK2, WK3 be 32-bit whitening keys and RK_{i} (0 <= i < 2r) be 32-bit round keys provided by the key scheduling part. Then, r-round encryption function ENCr is defined as follows: Katagi & Moriai Informational [Page 9] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Step 1. T0 | T1 | T2 | T3 <- P0 | (P1 XOR WK0) | P2 | (P3 XOR WK1) Step 2. T0 | T1 | T2 | T3 <- GFN_{4,r}(RK_{0}, ..., RK_{2r-1}, T0, T1, T2, T3) Step 3. C0 | C1 | C2 | C3 <- T0 | (T1 XOR WK2) | T2 | (T3 XOR WK3) The decryption function DECr is defined as follows: Step 1. T0 | T1 | T2 | T3 <- C0 | (C1 XOR WK2) | C2 | (C3 XOR WK3) Step 2. T0 | T1 | T2 | T3 <- GFNINV_{4,r}(RK_{0}, ..., RK_{2r-1}, T0, T1, T2, T3) Step 3. P0 | P1 | P2 | P3 <- T0 | (T1 XOR WK0) | T2 | (T3 XOR WK1) 5.2. The Numbers of Rounds The number of rounds, r, is 18, 22, and 26 for 128-bit, 192-bit, and 256-bit keys, respectively. The total number of RK_{i} depends on the key length. The data processing part requires 36, 44, and 52 round keys for 128-bit, 192-bit, and 256-bit keys, respectively. 6. Key Scheduling Part The key scheduling part of CLEFIA supports 128-bit, 192-bit, and 256-bit keys and outputs whitening keys WKi (0 <= i < 4) and round keys RK_{j} (0 <= j < 2r) for the data processing part. 6.1. DoubleSwap Function We first define the DoubleSwap function, which is used in the key scheduling part. The DoubleSwap Function Sigma(X): For 128-bit data X, Y = Sigma(X) = X[7-63] | X[121-127] | X[0-6] | X[64-120], where X[a-b] denotes a bit string cut from the a-th bit to the b-th bit of X. Bit 0 is the most significant bit. Katagi & Moriai Informational [Page 10] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 6.2. Overall Structure The key scheduling part of CLEFIA provides whitening keys and round keys for the data processing part. Let K be the key and L be an intermediate key, and the key scheduling part consists of the following two steps. 1. Generating L from K. 2. Expanding K and L (Generating WKi and RK_{j}). To generate L from K, the key schedule for a 128-bit key uses a 128-bit permutation GFN_{4,12}, while the key schedules for 192/256-bit keys use a 256-bit permutation GFN_{8,10}. 6.3. Key Scheduling for a 128-Bit Key The 128-bit intermediate key L is generated by applying GFN_{4,12}, which takes twenty-four 32-bit constant values CON_128[i] (0 <= i < 24) as round keys and K = K0 | K1 | K2 | K3 as an input. Then, K and L are used to generate WKi (0 <= i < 4) and RK_{j} (0 <= j < 36) in the following steps. In the latter part, thirty-six 32-bit constant values CON_128[i] (24 <= i < 60) are used. The generation steps of CON_128[i] are explained in Section 6.6. (Generating L from K) Step 1. L <- GFN_{4,12}(CON_128[0], ..., CON_128[23], K0, ..., K3) (Expanding K and L) Step 2. WK0 | WK1 | WK2 | WK3 <- K Step 3. For i = 0 to 8 do the following: T <- L XOR (CON_128[24 + 4i] | CON_128[24 + 4i + 1] | CON_128[24 + 4i + 2] | CON_128[24 + 4i + 3]) L <- Sigma(L) if i is odd: T <- T XOR K RK_{4i} | RK_{4i + 1} | RK_{4i + 2} | RK_{4i + 3} <- T 6.4. Key Scheduling for a 192-Bit Key Two 128-bit values KL and KR are generated from a 192-bit key K = K0 | K1 | K2 | K3 | K4 | K5, where Ki is 32-bit data. Then, two 128-bit values LL and LR are generated by applying GFN_{8,10}, which takes CON_192[i] (0 <= i < 40) as round keys and KL|KR as a 256-bit input. Katagi & Moriai Informational [Page 11] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Then, KL,KR and LL,LR are used to generate WKi (0 <= i < 4) and RK_{j} (0 <= j < 44) in the following steps. In the latter part, forty-four 32-bit constant values CON_192[i] (40 <= i < 84) are used. The following steps show the 192-bit/256-bit key scheduling. For the 192-bit key scheduling, the value of k is set as 192. 6.5. Key Scheduling for a 256-Bit Key The key scheduling for a 256-bit key is almost the same as that for a 192-bit key, except for constant values, the required number of RKi, and the initialization of KR. For a 256-bit key, the value of k is set as 256, and the steps are almost the same as in the 192-bit key case. The difference is that we use CON_256[i](0 <= i < 40) as round keys to generate LL and LR, and then to generate RK_{j} (0 <= j < 52), we use fifty-two 32-bit constant values CON_256[i](40 <= i < 92). (Generating LL,LR from KL,KR for a k-bit key) Step 1. Set k = 192 or k = 256 Step 2. If k = 192 : KL <- K0 | K1 | K2 | K3, KR <- K4 | K5 | ~K0 | ~K1 else if k = 256 : KL <- K0 | K1 | K2 | K3, KR <- K4 | K5 | K6 | K7 Step 3. Let KL = KL0 | KL1 | KL2 | KL3 KR = KR0 | KR1 | KR2 | KR3 LL|LR <- GFN_{8,10}(CON_k[0] , ..., CON_k[39], KL0, ..., KL3, KR0, ..., KR3) (Expanding KL,KR and LL,LR for a k-bit key) Step 4. WK0 | WK1 | WK2 | WK3 <- KL XOR KR Katagi & Moriai Informational [Page 12] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Step 5. For i = 0 to 10 (if k = 192), or 12 (if k = 256) do the following: If (i mod 4) = 0 or 1: T <- LL XOR (CON_k[40 + 4i] | CON_k[40 + 4i + 1] | CON_k[40 + 4i + 2] | CON_k[40 + 4i + 3]) LL <- Sigma(LL) if i is odd: T <- T XOR KR else: T <- LR XOR (CON_k[40 + 4i] | CON_k[40 + 4i + 1] | CON_k[40 + 4i + 2] | CON_k[40 + 4i + 3]) LR <- Sigma(LR) if i is odd: T <- T XOR KL RK_{4i} | RK_{4i + 1} | RK_{4i + 2} | RK_{4i + 3} <- T 6.6. Constant Values 32-bit constant values CON_k[i] are used in the key scheduling algorithm. We need 60, 84, and 92 constant values for 128-bit, 192-bit, and 256-bit keys, respectively. Let P(16) = 0xb7e1 (= (e-2)2^16) and Q(16) = 0x243f (= (pi-3)2^16), where e is the base of the natural logarithm (2.71828...) and pi is the circle ratio (3.14159...). CON_k[i], for k = 128,192,256, are generated as follows (see Table 3 for the repetition numbers l_k and the initial values IV_k). Step 1. T_k[0] <- IV_k Step 2. For i = 0 to l_k - 1 do the following: Step 2.1. CON_k[2i] <- (T_k[i] XOR P) | (~T_k[i] <<< 1) Step 2.2. CON_k[2i + 1] <- (~T_k[i] XOR Q) | (T_k[i] <<< 8) Step 2.3. T_k[i + 1] <- T_k[i] * (0x0002^{-1}) In Step 2.3, the multiplications are performed in the field GF(2^16) defined by a primitive polynomial z^16 + z^15 + z^13 + z^11 + z^5 + z^4 + 1 (=0x1a831). 0x0002^{-1} denotes the multiplicative inverse of the finite field element z. The selection criteria of IV and the primitive polynomial are shown in [CLEFIA1]. Katagi & Moriai Informational [Page 13] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Table 3: Required Numbers of Constant Values k # of CON_k[i] l_k IV_k -------------------------------------- 128 60 30 0x428a 192 84 42 0x7137 256 92 46 0xb5c0 Tables 4-6 show the values of T_k[i](k = 128,192,256), and Tables 7-9 show the values of CON_k[i](k = 128,192,256). Table 4: T_128[i] i 0 1 2 3 4 5 6 7 T_128[i] 428a 2145 c4ba 625d e536 729b ed55 a2b2 i 8 9 10 11 12 13 14 15 T_128[i] 5159 fcb4 7e5a 3f2d cb8e 65c7 e6fb a765 i 16 17 18 19 20 21 22 23 T_128[i] 87aa 43d5 f5f2 7af9 e964 74b2 3a59 c934 i 24 25 26 27 28 29 T_128[i] 649a 324d cd3e 669f e757 a7b3 Table 5: T_192[i] i 0 1 2 3 4 5 6 7 T_192[i] 7137 ec83 a259 8534 429a 214d c4be 625f i 8 9 10 11 12 13 14 15 T_192[i] e537 a683 8759 97b4 4bda 25ed c6ee 6377 i 16 17 18 19 20 21 22 23 T_192[i] e5a3 a6c9 877c 43be 21df c4f7 b663 8f29 i 24 25 26 27 28 29 30 31 T_192[i] 938c 49c6 24e3 c669 b72c 5b96 2dcb c2fd i 32 33 34 35 36 37 38 39 T_192[i] b566 5ab3 f941 a8b8 545c 2a2e 1517 de93 i 40 41 T_192[i] bb51 89b0 Katagi & Moriai Informational [Page 14] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Table 6: T_256[i] i 0 1 2 3 4 5 6 7 T_256[i] b5c0 5ae0 2d70 16b8 0b5c 05ae 02d7 d573 i 8 9 10 11 12 13 14 15 T_256[i] bea1 8b48 45a4 22d2 1169 dcac 6e56 372b i 16 17 18 19 20 21 22 23 T_256[i] cf8d b3de 59ef f8ef a86f 802f 940f 9e1f i 24 25 26 27 28 29 30 31 T_256[i] 9b17 9993 98d1 9870 4c38 261c 130e 0987 i 32 33 34 35 36 37 38 39 T_256[i] d0db bc75 8a22 4511 f690 7b48 3da4 1ed2 i 40 41 42 43 44 45 T_256[i] 0f69 d3ac 69d6 34eb ce6d b32e Table 7: CON_128[i] (0 <= i < 60) i 0 1 2 3 CON_128[i] f56b7aeb 994a8a42 96a4bd75 fa854521 i 4 5 6 7 CON_128[i] 735b768a 1f7abac4 d5bc3b45 b99d5d62 i 8 9 10 11 CON_128[i] 52d73592 3ef636e5 c57a1ac9 a95b9b72 i 12 13 14 15 CON_128[i] 5ab42554 369555ed 1553ba9a 7972b2a2 i 16 17 18 19 CON_128[i] e6b85d4d 8a995951 4b550696 2774b4fc i 20 21 22 23 CON_128[i] c9bb034b a59a5a7e 88cc81a5 e4ed2d3f i 24 25 26 27 CON_128[i] 7c6f68e2 104e8ecb d2263471 be07c765 i 28 29 30 31 CON_128[i] 511a3208 3d3bfbe6 1084b134 7ca565a7 i 32 33 34 35 CON_128[i] 304bf0aa 5c6aaa87 f4347855 9815d543 i 36 37 38 39 CON_128[i] 4213141a 2e32f2f5 cd180a0d a139f97a i 40 41 42 43 CON_128[i] 5e852d36 32a464e9 c353169b af72b274 i 44 45 46 47 CON_128[i] 8db88b4d e199593a 7ed56d96 12f434c9 i 48 49 50 51 CON_128[i] d37b36cb bf5a9a64 85ac9b65 e98d4d32 i 52 53 54 55 CON_128[i] 7adf6582 16fe3ecd d17e32c1 bd5f9f66 i 56 57 58 59 CON_128[i] 50b63150 3c9757e7 1052b098 7c73b3a7 Katagi & Moriai Informational [Page 15] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Table 8: CON_192[i] (0 <= i < 84) i 0 1 2 3 CON_192[i] c6d61d91 aaf73771 5b6226f8 374383ec i 4 5 6 7 CON_192[i] 15b8bb4c 799959a2 32d5f596 5ef43485 i 8 9 10 11 CON_192[i] f57b7acb 995a9a42 96acbd65 fa8d4d21 i 12 13 14 15 CON_192[i] 735f7682 1f7ebec4 d5be3b41 b99f5f62 i 16 17 18 19 CON_192[i] 52d63590 3ef737e5 1162b2f8 7d4383a6 i 20 21 22 23 CON_192[i] 30b8f14c 5c995987 2055d096 4c74b497 i 24 25 26 27 CON_192[i] fc3b684b 901ada4b 920cb425 fe2ded25 i 28 29 30 31 CON_192[i] 710f7222 1d2eeec6 d4963911 b8b77763 i 32 33 34 35 CON_192[i] 524234b8 3e63a3e5 1128b26c 7d09c9a6 i 36 37 38 39 CON_192[i] 309df106 5cbc7c87 f45f7883 987ebe43 i 40 41 42 43 CON_192[i] 963ebc41 fa1fdf21 73167610 1f37f7c4 i 44 45 46 47 CON_192[i] 01829338 6da363b6 38c8e1ac 54e9298f i 48 49 50 51 CON_192[i] 246dd8e6 484c8c93 fe276c73 9206c649 i 52 53 54 55 CON_192[i] 9302b639 ff23e324 7188732c 1da969c6 i 56 57 58 59 CON_192[i] 00cd91a6 6cec2cb7 ec7748d3 8056965b i 60 61 62 63 CON_192[i] 9a2aa469 f60bcb2d 751c7a04 193dfdc2 i 64 65 66 67 CON_192[i] 02879532 6ea666b5 ed524a99 8173b35a i 68 69 70 71 CON_192[i] 4ea00d7c 228141f9 1f59ae8e 7378b8a8 i 72 73 74 75 CON_192[i] e3bd5747 8f9c5c54 9dcfaba3 f1ee2e2a i 76 77 78 79 CON_192[i] a2f6d5d1 ced71715 697242d8 055393de i 80 81 82 83 CON_192[i] 0cb0895c 609151bb 3e51ec9e 5270b089 Katagi & Moriai Informational [Page 16] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Table 9: CON_256[i] (0 <= i < 92) i 0 1 2 3 CON_256[i] 0221947e 6e00c0b5 ed014a3f 8120e05a i 4 5 6 7 CON_256[i] 9a91a51f f6b0702d a159d28f cd78b816 i 8 9 10 11 CON_256[i] bcbde947 d09c5c0b b24ff4a3 de6eae05 i 12 13 14 15 CON_256[i] b536fa51 d917d702 62925518 0eb373d5 i 16 17 18 19 CON_256[i] 094082bc 6561a1be 3ca9e96e 5088488b i 20 21 22 23 CON_256[i] f24574b7 9e64a445 9533ba5b f912d222 i 24 25 26 27 CON_256[i] a688dd2d caa96911 6b4d46a6 076cacdc i 28 29 30 31 CON_256[i] d9b72353 b596566e 80ca91a9 eceb2b37 i 32 33 34 35 CON_256[i] 786c60e4 144d8dcf 043f9842 681edeb3 i 36 37 38 39 CON_256[i] ee0e4c21 822fef59 4f0e0e20 232feff8 i 40 41 42 43 CON_256[i] 1f8eaf20 73af6fa8 37ceffa0 5bef2f80 i 44 45 46 47 CON_256[i] 23eed7e0 4fcf0f94 29fec3c0 45df1f9e i 48 49 50 51 CON_256[i] 2cf6c9d0 40d7179b 2e72ccd8 42539399 i 52 53 54 55 CON_256[i] 2f30ce5c 4311d198 2f91cf1e 43b07098 i 56 57 58 59 CON_256[i] fbd9678f 97f8384c 91fdb3c7 fddc1c26 i 60 61 62 63 CON_256[i] a4efd9e3 c8ce0e13 be66ecf1 d2478709 i 64 65 66 67 CON_256[i] 673a5e48 0b1bdbd0 0b948714 67b575bc i 68 69 70 71 CON_256[i] 3dc3ebba 51e2228a f2f075dd 9ed11145 i 72 73 74 75 CON_256[i] 417112de 2d5090f6 cca9096f a088487b i 76 77 78 79 CON_256[i] 8a4584b7 e664a43d a933c25b c512d21e i 80 81 82 83 CON_256[i] b888e12d d4a9690f 644d58a6 086cacd3 i 84 85 86 87 CON_256[i] de372c53 b216d669 830a9629 ef2beb34 i 88 89 90 91 CON_256[i] 798c6324 15ad6dce 04cf99a2 68ee2eb3 Katagi & Moriai Informational [Page 17] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 7. Security Considerations The security of CLEFIA has been scrutinized in the public community, but no security weaknesses have been found for full-round CLEFIA to date, neither by the designers nor by independent cryptographers. Security evaluation by the designers is described in [CLEFIA3], and a list of published cryptanalysis results by external cryptographers is available from http://www.sony.net/Products/cryptography/clefia/technical/ related_material.html. 8. Informative References [CLEFIA1] The 128-bit Blockcipher CLEFIA - Algorithm Specification, Revision 1.0, June 1, 2007, Sony Corporation, http://www.sony.net/Products/cryptography/clefia/ technical/data/clefia-spec-1.0.pdf. [CLEFIA2] The 128-bit blockcipher CLEFIA - Design Rationale, Revision 1.0, June 1, 2007, Sony Corporation, http://www.sony.net/Products/cryptography/clefia/ technical/data/clefia-design-1.0.pdf. [CLEFIA3] The 128-bit blockcipher CLEFIA - Security and Performance Evaluations, Revision 1.0, June 1, 2007, Sony Corporation, http://www.sony.net/Products/cryptography/clefia/ technical/data/clefia-eval-1.0.pdf. [CRYPTREC] Cryptography Research and Evaluation Committees, http://www.cryptrec.go.jp/. [FIPS-197] National Institute of Standards and Technology, "Advanced Encryption Standard (AES)", FIPS 197, November 2001, http://csrc.nist.gov/publications/fips/fips197/ fips-197.pdf. [FSE07] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., and T. Iwata, "The 128-bit Blockcipher CLEFIA", proceedings of Fast Software Encryption 2007 - FSE 2007, LNCS 4593, pp. 181-195, Springer-Verlag, 2007. [ISO29192-2] ISO/IEC 29192-2, "Information technology - Security techniques - Lightweight cryptography - Part 2: Block ciphers", http://www.iso.org/iso/iso_catalogue/ catalogue_tc/catalogue_detail.htm?csnumber=56552. Katagi & Moriai Informational [Page 18] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Appendix A. Test Vectors In this appendix, we give test vectors of CLEFIA for each key length. The data are expressed in hexadecimal form. For the intermediate values of these vectors, refer to Appendix B. 128-bit key: key ffeeddcc bbaa9988 77665544 33221100 plaintext 00010203 04050607 08090a0b 0c0d0e0f ciphertext de2bf2fd 9b74aacd f1298555 459494fd 192-bit key: key ffeeddcc bbaa9988 77665544 33221100 f0e0d0c0 b0a09080 plaintext 00010203 04050607 08090a0b 0c0d0e0f ciphertext e2482f64 9f028dc4 80dda184 fde181ad 256-bit key: key ffeeddcc bbaa9988 77665544 33221100 f0e0d0c0 b0a09080 70605040 30201000 plaintext 00010203 04050607 08090a0b 0c0d0e0f ciphertext a1397814 289de80c 10da46d1 fa48b38a Appendix B. Test Vectors (Intermediate Values) 128-bit key: key ffeeddcc bbaa9988 77665544 33221100 plaintext 00010203 04050607 08090a0b 0c0d0e0f ciphertext de2bf2fd 9b74aacd f1298555 459494fd L 8f89a61b 9db9d0f3 93e65627 da0d027e WK_{0,1,2,3} ffeeddcc bbaa9988 77665544 33221100 RK_{0,1,2,3} f3e6cef9 8df75e38 41c06256 640ac51b RK_{4,5,6,7} 6a27e20a 5a791b90 e8c528dc 00336ea3 RK_{8,9,10,11} 59cd17c4 28565583 312a37cc c08abd77 RK_{12,13,14,15} 7e8e7eec 8be7e949 d3f463d6 a0aad6aa RK_{16,17,18,19} e75eb039 0d657eb9 018002e2 9117d009 RK_{20,21,22,23} 9f98d11e babee8cf b0369efa d3aaef0d RK_{24,25,26,27} 3438f93b f9cea4a0 68df9029 b869b4a7 RK_{28,29,30,31} 24d6406d e74bc550 41c28193 16de4795 RK_{32,33,34,35} a34a20f5 33265d14 b19d0554 5142f434 Katagi & Moriai Informational [Page 19] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 plaintext 00010203 04050607 08090a0b 0c0d0e0f initial whitening key ffeeddcc bbaa9988 after whitening 00010203 fbebdbcb 08090a0b b7a79787 Round 1 input 00010203 fbebdbcb 08090a0b b7a79787 F-function F0 F1 input 00010203 08090a0b round key f3e6cef9 8df75e38 after key add f3e7ccfa 85fe5433 after S 290246e1 777de8e8 after M 547a3193 abf12070 Round 2 input af91ea58 08090a0b 1c56b7f7 00010203 F-function F0 F1 input af91ea58 1c56b7f7 round key 41c06256 640ac51b after key add ee51880e 785c72ec after S cb5d2b0c 63a5edd2 after M f51cebb3 82dfe347 Round 3 input fd15e1b8 1c56b7f7 82dee144 af91ea58 F-function F0 F1 input fd15e1b8 82dee144 round key 6a27e20a 5a791b90 after key add 973203b2 d8a7fad4 after S c2c7c6c2 be59e10d after M d8dfd8de e15ea81c Round 4 input c4896f29 82dee144 4ecf4244 fd15e1b8 F-function F0 F1 input c4896f29 4ecf4244 round key e8c528dc 00336ea3 after key add 2c4c47f5 4efc2ce7 after S 9da4dafc 43bce638 after M b5b28e96 b65c519a Round 5 input 376c6fd2 4ecf4244 4b49b022 c4896f29 F-function F0 F1 input 376c6fd2 4b49b022 round key 59cd17c4 28565583 after key add 6ea17816 631fe5a1 after S f26ad3e5 62af9f1b after M 29f08afd be01d127 Katagi & Moriai Informational [Page 20] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Round 6 input 673fc8b9 4b49b022 7a88be0e 376c6fd2 F-function F0 F1 input 673fc8b9 7a88be0e round key 312a37cc c08abd77 after key add 5615ff75 ba020379 after S b39c8e58 2dd1e9a2 after M 5999a79e 0429b329 Round 7 input 12d017bc 7a88be0e 3345dcfb 673fc8b9 F-function F0 F1 input 12d017bc 3345dcfb round key 7e8e7eec 8be7e949 after key add 6c5e6950 b8a235b2 after S 8b737025 67a08eba after M 6ed11b09 dfd3cd32 Round 8 input 1459a507 3345dcfb b8ec058b 12d017bc F-function F0 F1 input 1459a507 b8ec058b round key d3f463d6 a0aad6aa after key add c7adc6d1 1846d321 after S e7ee5a5f 9e97f1a1 after M 8c9d011c 93684eec Round 9 input bfd8dde7 b8ec058b 81b85950 1459a507 F-function F0 F1 input bfd8dde7 81b85950 round key e75eb039 0d657eb9 after key add 58866dde 8cdd27e9 after S 4e821daf 59c56044 after M e6d6501e 6d5839b4 Round 10 input 5e3a5595 81b85950 79019cb3 bfd8dde7 F-function F0 F1 input 5e3a5595 79019cb3 round key 018002e2 9117d009 after key add 5fba5777 e8164cba after S 612d8f7b 0185a49c after M 3a1b0e97 b9b479c8 Round 11 input bba357c7 79019cb3 066ca42f 5e3a5595 F-function F0 F1 input bba357c7 066ca42f round key 9f98d11e babee8cf after key add 243b86d9 bcd24ce0 after S f70f1144 cb72a481 after M 28974052 4a6700b1 Katagi & Moriai Informational [Page 21] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Round 12 input 5196dce1 066ca42f 145d5524 bba357c7 F-function F0 F1 input 5196dce1 145d5524 round key b0369efa d3aaef0d after key add e1a0421b c7f7ba29 after S 6f7efd4f 72642dce after M ffb5db32 907d3820 Round 13 input f9d97f1d 145d5524 2bde6fe7 5196dce1 F-function F0 F1 input f9d97f1d 2bde6fe7 round key 3438f93b f9cea4a0 after key add cde18626 d210cb47 after S 3f751141 ab28e0da after M 0a744c28 1c3e38a3 Round 14 input 1e29190c 2bde6fe7 4da8e442 f9d97f1d F-function F0 F1 input 1e29190c 4da8e442 round key 68df9029 b869b4a7 after key add 76f68925 f5c150e5 after S fe6db7e7 fc0c25f6 after M aaa2c803 c4315b8d Round 15 input 817ca7e4 4da8e442 3de82490 1e29190c F-function F0 F1 input 817ca7e4 3de82490 round key 24d6406d e74bc550 after key add a5aae789 daa3e1c0 after S 8d233818 2904757b after M 7bd4cced eac2f0fb Round 16 input 367c28af 3de82490 f4ebe9f7 817ca7e4 F-function F0 F1 input 367c28af f4ebe9f7 round key 41c28193 16de4795 after key add 77bea93c e235ae62 after S 7c4a935b 669b8953 after M 598e6940 c119609f Round 17 input 64664dd0 f4ebe9f7 4065c77b 367c28af F-function F0 F1 input 64664dd0 4065c77b round key a34a20f5 33265d14 after key add c72c6d25 73439a6f after S e7e61de7 788c85b4 after M 2ac01b0a c755adfa Katagi & Moriai Informational [Page 22] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Round 18 input de2bf2fd 4065c77b f1298555 64664dd0 F-function F0 F1 input de2bf2fd f1298555 round key b19d0554 5142f434 after key add 6fb6f7a9 a06b7161 after S b44d648c 7e99ea2a after M ac7738f2 12d0c82d output de2bf2fd ec12ff89 f1298555 76b685fd final whitening key 77665544 33221100 after whitening de2bf2fd 9b74aacd f1298555 459494fd ciphertext de2bf2fd 9b74aacd f1298555 459494fd 192-bit key: key ffeeddcc bbaa9988 77665544 33221100 f0e0d0c0 b0a09080 plaintext 00010203 04050607 08090a0b 0c0d0e0f ciphertext e2482f64 9f028dc4 80dda184 fde181ad LL db05415a 800082db 7cb8186c d788c5f3 LR 1ca9b2e1 b4606829 c92dd35e 2258a432 WK_{0,1,2,3} 0f0e0d0c 0b0a0908 77777777 77777777 RK_{0,1,2,3} 4d3bfd1b 7a1f5dfa 0fae6e7c c8bf3237 RK_{4,5,6,7} 73c2eeb8 dd429ec5 e220b3af c9135e73 RK_{8,9,10,11} 38c46a07 fc2ce4ba 370abf2d b05e627b RK_{12,13,14,15} 38351b2f 74bd6e1e 1b7c7dce 92cfc98e RK_{16,17,18,19} 509b31a6 4c5ad53c 6fc2ba33 e1e5c878 RK_{20,21,22,23} 419a74b9 1dd79e0e 240a33d2 9dabfd09 RK_{24,25,26,27} 6e3ff82a 74ac3ffd b9696e2e cc0b3a38 RK_{28,29,30,31} ed785cbd 9c077c13 04978d83 2ec058ba RK_{32,33,34,35} 4bbd5f6a 31fe8de8 b76da574 3a6fa8e7 RK_{36,37,38,39} 521213ce 4f1f59d8 c13624f6 ee91f6a4 RK_{40,41,42,43} 17f68fde f6c360a9 6288bc72 c0ad856b plaintext 00010203 04050607 08090a0b 0c0d0e0f initial whitening key 0f0e0d0c 0b0a0908 after whitening 00010203 0b0b0b0b 08090a0b 07070707 Round 1 input 00010203 0b0b0b0b 08090a0b 07070707 F-function F0 F1 input 00010203 08090a0b round key 4d3bfd1b 7a1f5dfa after key add 4d3aff18 721657f1 after S 43c58e9e ed85d736 after M b5021a3b c397f62b Katagi & Moriai Informational [Page 23] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Round 2 input be091130 08090a0b c490f12c 00010203 F-function F0 F1 input be091130 c490f12c round key 0fae6e7c c8bf3237 after key add b1a77f4c 0c2fc31b after S f3d10ba4 13d83a3d after M 9fba69c1 6683cae3 Round 3 input 97b363ca c490f12c 6682c8e0 be091130 F-function F0 F1 input 97b363ca 6682c8e0 round key 73c2eeb8 dd429ec5 after key add e4718d72 bbc05625 after S 79ea66ed f47b0d7a after M 61c21ea5 120e06e2 Round 4 input a552ef89 6682c8e0 ac0717d2 97b363ca F-function F0 F1 input a552ef89 ac0717d2 round key e220b3af c9135e73 after key add 47725c26 651449a1 after S daeda541 355c651b after M 28a43c63 cb1ab573 Round 5 input 4e26f483 ac0717d2 5ca9d6b9 a552ef89 F-function F0 F1 input 4e26f483 5ca9d6b9 round key 38c46a07 fc2ce4ba after key add 76e29e84 a0853203 after S fe663e39 7edcc7c6 after M 5ce7dafe ac7f4e3e Round 6 input f0e0cd2c 5ca9d6b9 092da1b7 4e26f483 F-function F0 F1 input f0e0cd2c 092da1b7 round key 370abf2d b05e627b after key add c7ea7201 b973c3cc after S e77f9fda 174a3a46 after M b9869270 8fc7e089 Round 7 input e52f44c9 092da1b7 c1e1140a f0e0cd2c F-function F0 F1 input e52f44c9 c1e1140a round key 38351b2f 74bd6e1e after key add dd1a5fe6 b55c7a14 after S c5496150 5aa5c15c after M 33d8590f e62eb913 Katagi & Moriai Informational [Page 24] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Round 8 input 3af5f8b8 c1e1140a 16ce743f e52f44c9 F-function F0 F1 input 3af5f8b8 16ce743f round key 1b7c7dce 92cfc98e after key add 21898576 8401bdb1 after S a118dc09 3949b1f3 after M f091202d 04f9e827 Round 9 input 31703427 16ce743f e1d6acee 3af5f8b8 F-function F0 F1 input 31703427 e1d6acee round key 509b31a6 4c5ad53c after key add 61eb0581 ad8c79d2 after S 2a8d3304 eeffc072 after M f9639a90 8bebfe3d Round 10 input efadeeaf e1d6acee b11e0685 31703427 F-function F0 F1 input efadeeaf b11e0685 round key 6fc2ba33 e1e5c878 after key add 806f549c 50fbcefd after S cd5eeb61 25d7fe02 after M a100e35b 26a4e16d Round 11 input 40d64fb5 b11e0685 17d4d54a efadeeaf F-function F0 F1 input 40d64fb5 17d4d54a round key 419a74b9 1dd79e0e after key add 014c3b0c 0a034b44 after S 49a4c013 b4c6c912 after M 51c0208f f1a2c339 Round 12 input e0de260a 17d4d54a 1e0f2d96 40d64fb5 F-function F0 F1 input e0de260a 1e0f2d96 round key 240a33d2 9dabfd09 after key add c4d415d8 83a4d09f after S 801beebe 86b8f8ed after M 8a9aef34 3e451646 Round 13 input 9d4e3a7e 1e0f2d96 7e9359f3 e0de260a F-function F0 F1 input 9d4e3a7e 7e9359f3 round key 6e3ff82a 74ac3ffd after key add f371c254 0a3f660e after S 29ea68e8 b4f530a8 after M 17524741 4b8c607e Katagi & Moriai Informational [Page 25] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Round 14 input 095d6ad7 7e9359f3 ab524674 9d4e3a7e F-function F0 F1 input 095d6ad7 ab524674 round key b9696e2e cc0b3a38 after key add b03404f9 67597c4c after S 152a2f03 52161e39 after M f7ee818b 7902f3eb Round 15 input 897dd878 ab524674 e44cc995 095d6ad7 F-function F0 F1 input 897dd878 e44cc995 round key ed785cbd 9c077c13 after key add 640584c5 784bb586 after S 459d9e10 636b5a11 after M 4034defc 0228bdd4 Round 16 input eb669888 e44cc995 0b75d703 897dd878 F-function F0 F1 input eb669888 0b75d703 round key 04978d83 2ec058ba after key add eff1150b 25b58fb9 after S 90e4ee38 e7691f3b after M 4a678609 05b2b4a9 Round 17 input ae2b4f9c 0b75d703 8ccf6cd1 eb669888 F-function F0 F1 input ae2b4f9c 8ccf6cd1 round key 4bbd5f6a 31fe8de8 after key add e59610f6 bd31e139 after S f6a5286d b15d7589 after M 720df49d bad65e22 Round 18 input 7978239e 8ccf6cd1 51b0c6aa ae2b4f9c F-function F0 F1 input 7978239e 51b0c6aa round key b76da574 3a6fa8e7 after key add ce1586ea 6bdf6e4d after S 919c117f 283aaa43 after M ef24fe56 08916103 Round 19 input 63eb9287 51b0c6aa a6ba2e9f 7978239e F-function F0 F1 input 63eb9287 a6ba2e9f round key 521213ce 4f1f59d8 after key add 31f98149 e9a57747 after S 5d03e265 3c8d7bda after M b7464b63 e1d086a7 Katagi & Moriai Informational [Page 26] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Round 20 input e6f68dc9 a6ba2e9f 98a8a539 63eb9287 F-function F0 F1 input e6f68dc9 98a8a539 round key c13624f6 ee91f6a4 after key add 27c0a93f 7639539d after S 20b5938b 09893194 after M 3cae819e b603c454 Round 21 input 9a14af01 98a8a539 d5e856d3 e6f68dc9 F-function F0 F1 input 9a14af01 d5e856d3 round key 17f68fde f6c360a9 after key add 8de220df 232b367a after S 6666bff2 b383a1bd after M 7ae08a5d 662b2c4d Round 22 input e2482f64 d5e856d3 80dda184 9a14af01 F-function F0 F1 input e2482f64 80dda184 round key 6288bc72 c0ad856b after key add 80c09316 407024ef after S cdb5f1e5 fbe99290 after M 3d9dac60 108259db output e2482f64 e875fab3 80dda184 8a96f6da final whitening key 77777777 77777777 after whitening e2482f64 9f028dc4 80dda184 fde181ad ciphertext e2482f64 9f028dc4 80dda184 fde181ad Katagi & Moriai Informational [Page 27] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 256-bit key: key ffeeddcc bbaa9988 77665544 33221100 f0e0d0c0 b0a09080 70605040 30201000 plaintext 00010203 04050607 08090a0b 0c0d0e0f ciphertext a1397814 289de80c 10da46d1 fa48b38a LL 477e8f09 66ee5378 2cc2be04 bf55e28f LR d6c10b89 4eeab575 84bd5663 cc933940 WK_{0,1,2,3} 0f0e0d0c 0b0a0908 07060504 03020100 RK_{0,1,2,3} 58f02029 15413cd0 1b0c41a4 e4bacd0f RK_{4,5,6,7} 6c498393 8846231b 1fc716fc 7c81a45b RK_{8,9,10,11} fa37c259 0e3da2ee aacf9abb 8ec0aad9 RK_{12,13,14,15} b05bd737 8de1f2d0 8ffee0f6 b70b47ea RK_{16,17,18,19} 581b3e34 03263f89 2f7100cd 05cee171 RK_{20,21,22,23} b523d4e9 176d7c44 6d7ba5d7 f797b2f3 RK_{24,25,26,27} 25d80df2 a646bba2 6a3a95e1 3e3a47f0 RK_{28,29,30,31} b304eb20 44f8824e c7557cbc 47401e21 RK_{32,33,34,35} d71ff7e9 aca1fb0c 2deff35d 6ca3a830 RK_{36,37,38,39} 4dd7cfb7 ae71c9f6 4e911fef 90aa95de RK_{40,41,42,43} 2c664a7a 8cb5cf6b 14c8de1e 43b9caef RK_{44,45,46,47} 568c5a33 07ef7ddd 608dc860 ac9e50f8 RK_{48,49,50,51} c0c18358 4f53c80e 33e01cb9 80251e1c plaintext 00010203 04050607 08090a0b 0c0d0e0f initial whitening key 0f0e0d0c 0b0a0908 after whitening 00010203 0b0b0b0b 08090a0b 07070707 Round 1 input 00010203 0b0b0b0b 08090a0b 07070707 F-function F0 F1 input 00010203 08090a0b round key 58f02029 15413cd0 after key add 58f1222a 1d4836db after S 4ee41927 2c78a1ac after M 2db2101b d87ee718 Round 2 input 26b91b10 08090a0b df79e01f 00010203 F-function F0 F1 input 26b91b10 df79e01f round key 1b0c41a4 e4bacd0f after key add 3db55ab4 3bc32d10 after S aa5afadb 0f1e1928 after M 317e029c c0cc96ba Katagi & Moriai Informational [Page 28] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Round 3 input 39770897 df79e01f c0cd94b9 26b91b10 F-function F0 F1 input 39770897 c0cd94b9 round key 6c498393 8846231b after key add 553e8b04 488bb7a2 after S 5487484e d84876a0 after M c3a7ac1d 7ae05884 Round 4 input 1cde4c02 c0cd94b9 5c594394 39770897 F-function F0 F1 input 1cde4c02 5c594394 round key 1fc716fc 7c81a45b after key add 03195afe 20d8e7cf after S c607fa95 12f002c9 after M 5edee0ce 4cfb0e90 Round 5 input 9e137477 5c594394 758c0607 1cde4c02 F-function F0 F1 input 9e137477 758c0607 round key fa37c259 0e3da2ee after key add 6424b62e 7bb1a4e9 after S 4592c8d2 46f3a044 after M adfd33ae 42450650 Round 6 input f1a4703a 758c0607 5e9b4a52 9e137477 F-function F0 F1 input f1a4703a 5e9b4a52 round key aacf9abb 8ec0aad9 after key add 5b6bea81 d05be08b after S 22285e04 f822d448 after M 0fa52ed4 aa7a0a9c Round 7 input 7a2928d3 5e9b4a52 34697eeb f1a4703a F-function F0 F1 input 7a2928d3 34697eeb round key b05bd737 8de1f2d0 after key add ca72ffe4 b9888c3b after S 23ed8e68 172b59c0 after M 8b158630 334e2af2 Round 8 input d58ecc62 34697eeb c2ea5ac8 7a2928d3 F-function F0 F1 input d58ecc62 c2ea5ac8 round key 8ffee0f6 b70b47ea after key add 5a702c94 75e11d22 after S facf9d64 586f2c19 after M 72c2027e a582d5f0 Katagi & Moriai Informational [Page 29] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Round 9 input 46ab7c95 c2ea5ac8 dfabfd23 d58ecc62 F-function F0 F1 input 46ab7c95 dfabfd23 round key 581b3e34 03263f89 after key add 1eb042a1 dc8dc2aa after S 177afd6a 57664735 after M 51d5740a 110287d7 Round 10 input 933f2ec2 dfabfd23 c48c4bb5 46ab7c95 F-function F0 F1 input 933f2ec2 c48c4bb5 round key 2f7100cd 05cee171 after key add bc4e2e0f c142aac4 after S e0434cd9 22fd2380 after M a768d32a b6ae4f2b Round 11 input 78c32e09 c48c4bb5 f00533be 933f2ec2 F-function F0 F1 input 78c32e09 f00533be round key b523d4e9 176d7c44 after key add cde0fae0 e7684ffa after S 3fd410d4 02ef5310 after M 08bd9b01 2fdb3f65 Round 12 input cc31d0b4 f00533be bce411a7 78c32e09 F-function F0 F1 input cc31d0b4 bce411a7 round key 6d7ba5d7 f797b2f3 after key add a14a7563 4b73a354 after S 1b512562 c94a71eb after M 7c2c762b 81ca0b59 Round 13 input 8c294595 bce411a7 f9092550 cc31d0b4 F-function F0 F1 input 8c294595 f9092550 round key 25d80df2 a646bba2 after key add a9f14867 5f4f9ef2 after S 93e47852 5c26cae5 after M 4a87c858 54bc68d5 Round 14 input f663d9ff f9092550 988db861 8c294595 F-function F0 F1 input f663d9ff 988db861 round key 6a3a95e1 3e3a47f0 after key add 9c594c1e a6b7ff91 after S 58ff39b0 054d1d75 after M d82301d4 085d5025 Katagi & Moriai Informational [Page 30] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Round 15 input 212a2484 988db861 847415b0 f663d9ff F-function F0 F1 input 212a2484 847415b0 round key b304eb20 44f8824e after key add 922ecfa4 c08c97fe after S 86d2c9a0 b5ff567d after M dbf56073 87e2a6a2 Round 16 input 4378d812 847415b0 71817f5d 212a2484 F-function F0 F1 input 4378d812 71817f5d round key c7557cbc 47401e21 after key add 842da4ae 36c1617c after S 9e19b889 a10c5414 after M 6791a3e3 e177d3a8 Round 17 input e3e5b653 71817f5d c05df72c 4378d812 F-function F0 F1 input e3e5b653 c05df72c round key d71ff7e9 aca1fb0c after key add 34fa41ba 6cfc0c20 after S d4e1be2d 32bc13bf after M 2743ef2d 6fec0aab Round 18 input 56c29070 c05df72c 2c94d2b9 e3e5b653 F-function F0 F1 input 56c29070 2c94d2b9 round key 2deff35d 6ca3a830 after key add 7b2d632d 40377a89 after S 56193719 fb13c1b7 after M ee6316fa 5e3245b7 Round 19 input 2e3ee1d6 2c94d2b9 bdd7f3e4 56c29070 F-function F0 F1 input 2e3ee1d6 bdd7f3e4 round key 4dd7cfb7 ae71c9f6 after key add 63e92e61 13a63a12 after S 373c4c54 8fe6c54b after M 87aab08e 8f8d16f3 Round 20 input ab3e6237 bdd7f3e4 d94f8683 2e3ee1d6 F-function F0 F1 input ab3e6237 d94f8683 round key 4e911fef 90aa95de after key add e5af7dd8 49e5135d after S f6ad88be 65f68f77 after M 0889df33 f418c84f Katagi & Moriai Informational [Page 31] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 Round 21 input b55e2cd7 d94f8683 da262999 ab3e6237 F-function F0 F1 input b55e2cd7 da262999 round key 2c664a7a 8cb5cf6b after key add 993866ad 5693e6f2 after S 2c2b6cee 0df150e5 after M 8999e772 da5415d2 Round 22 input 50d661f1 da262999 716a77e5 b55e2cd7 F-function F0 F1 input 50d661f1 716a77e5 round key 14c8de1e 43b9caef after key add 441ebfef 32d3bd0a after S 12b052ac c7bbb182 after M f5efd89e 744a9ced Round 23 input 2fc9f107 716a77e5 c114b03a 50d661f1 F-function F0 F1 input 2fc9f107 c114b03a round key 568c5a33 07ef7ddd after key add 7945ab34 c6fbcde7 after S a2a77e2a 4cd7e238 after M e84f6d9b ce67e20a Round 24 input 99251a7e c114b03a 9eb183fb 2fc9f107 F-function F0 F1 input 99251a7e 9eb183fb round key 608dc860 ac9e50f8 after key add f9a8d21e 322fd303 after S f84572b0 c7d8f1c6 after M 20634b77 591b3f55 Round 25 input e177fb4d 9eb183fb 76d2ce52 99251a7e F-function F0 F1 input e177fb4d 76d2ce52 round key c0c18358 4f53c80e after key add 21b67815 3981065c after S a14dd39c c8e20aa5 after M 3f88fbef 89ff5caf Round 26 input a1397814 76d2ce52 10da46d1 e177fb4d F-function F0 F1 input a1397814 10da46d1 round key 33e01cb9 80251e1c after key add 92d964ad 90ff58cd after S 864445ee 9a8e803f after M 5949235a 183d49c7 Katagi & Moriai Informational [Page 32] RFC 6114 The 128-Bit Blockcipher CLEFIA March 2011 output a1397814 2f9bed08 10da46d1 f94ab28a final whitening key 07060504 03020100 after whitening a1397814 289de80c 10da46d1 fa48b38a ciphertext a1397814 289de80c 10da46d1 fa48b38a Authors' Addresses Masanobu Katagi System Technologies Laboratories Sony Corporation 5-1-12 Kitashinagawa Shinagawa-ku Tokyo, 141-0001, Japan EMail: Masanobu.Katagi@jp.sony.com Shiho Moriai System Technologies Laboratories Sony Corporation 5-1-12 Kitashinagawa Shinagawa-ku Tokyo, 141-0001, Japan Phone: +81-3-5448-3701 EMail: clefia-q@jp.sony.com Katagi & Moriai Informational [Page 33]