πΎ Archived View for gmi.noulin.net βΊ man βΊ man3 βΊ catanh.3.gmi captured on 2024-08-31 at 13:45:09. Gemini links have been rewritten to link to archived content
β¬ οΈ Previous capture (2022-06-12)
-=-=-=-=-=-=-
CATANH(3) Linux Programmer's Manual CATANH(3) NAME catanh, catanhf, catanhl - complex arc tangents hyperbolic SYNOPSIS #include <complex.h> double complex catanh(double complex z); float complex catanhf(float complex z); long double complex catanhl(long double complex z); Link with -lm. DESCRIPTION These functions calculate the complex arc hyperbolic tangent of z. If y = catanh(z), then z = ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2]. One has: catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z)) VERSIONS These functions first appeared in glibc in version 2.1. ATTRIBUTES For an explanation of the terms used in this section, see attributes(7). ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ¬ββββββββββββββββ¬ββββββββββ βInterface β Attribute β Value β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββΌββββββββββ€ βcatanh(), catanhf(), catanhl() β Thread safety β MT-Safe β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ΄ββββββββββββββββ΄ββββββββββ CONFORMING TO C99, POSIX.1-2001, POSIX.1-2008. EXAMPLES /* Link with "-lm" */ #include <complex.h> #include <stdlib.h> #include <unistd.h> #include <stdio.h> int main(int argc, char *argv[]) { double complex z, c, f; if (argc != 3) { fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]); exit(EXIT_FAILURE); } z = atof(argv[1]) + atof(argv[2]) * I; c = catanh(z); printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c)); f = 0.5 * (clog(1 + z) - clog(1 - z)); printf("formula = %6.3f %6.3f*i\n", creal(f2), cimag(f2)); exit(EXIT_SUCCESS); } SEE ALSO atanh(3), cabs(3), cimag(3), ctanh(3), complex(7) 2021-03-22 CATANH(3)