💾 Archived View for republic.circumlunar.space › users › johngodlee › posts › 2018-11-20-gdal-ndvi.g… captured on 2024-08-31 at 12:55:57. Gemini links have been rewritten to link to archived content
⬅️ Previous capture (2023-04-19)
-=-=-=-=-=-=-
DATE: 2018-11-20
AUTHOR: John L. Godlee
I recently ventured into trying to make sense of sentinel 2 data, multispectral remote sensing imagery. I wanted to calculate NDVI for Bicuar National Park, so I could see whether it's possible to identify areas of miombo woodland within the park using variation in the NDVI, which you would expect is higher in woodland and lower in grassland.
I got some cloud free images for the area covering Bicuar and wrote a Python script which calculates NDVI, from the red band and near infra-red band:
# Import libraries import glob import gdal import os import fnmatch import re import cv2 # Define a function to find files given a pattern def find(pattern, path): result = [] for root, dirs, files in os.walk(path): for name in files: if fnmatch.fnmatch(name, pattern): result.append(os.path.join(root, name)) return result # Set working directory for images rootdir = '/sentinel_bicuar' os.chdir(rootdir) # Create a list of folders folders = next(os.walk(os.getcwd()))[1] # Loop through each folder in turn for i in folders: # Set input directory in_dir = rootdir + '/' + i # Search directory for desired bands red_file = find('*B04.jp2', in_dir)[0] print("Processing: " + red_file) nir_file = find('*B08.jp2', in_dir)[0] # Open each band using gdal red_link = gdal.Open(red_file) nir_link = gdal.Open(nir_file) # Store as an array red_array = red_link.GetRasterBand(1).ReadAsArray() * 0.0001 nir_array = nir_link.GetRasterBand(1).ReadAsArray() * 0.0001 # Create a mask filled with zeroes mask = red_array == 0. # Calculate NDVI ndvi2 = (nir_array - red_array) / (nir_array + red_array) # Set mask values back to 0 ndvi2[mask] = 0. # Create output filename based on input name out_string_a = re.search('A004323_(.*)/IMG_DATA', red_file).group(1) out_string_b = re.search('IMG_DATA/(.*)_B04.', red_file).group(1) out_file = rootdir + '/' + out_string_a + '_' + out_string_b + '_NDVI.tif' print('Creating file: ' + out_file) # Get dimensions x_pixels = ndvi2.shape[0] # number of pixels in x y_pixels = ndvi2.shape[1] # number of pixels in y # Set up output GeoTIFF driver = gdal.GetDriverByName('GTiff') # Create driver using output filename, x and y pixels, # of bands, and datatype ndvi_data = driver.Create(out_file,x_pixels, y_pixels, 1, gdal.GDT_Float32) # Set nodata value ndvi_data.GetRasterBand(1).SetNoDataValue(0.) # Set NDVI array as the 1 output raster band ndvi_data.GetRasterBand(1).WriteArray(ndvi2) # Setting up the coordinate reference system of the output GeoTIFF geotrans=red_link.GetGeoTransform() # Grab input GeoTranform information print(geotrans) proj=red_link.GetProjection() # Grab projection information from input file # now set GeoTransform parameters and projection on the output file ndvi_data.SetGeoTransform(geotrans) ndvi_data.SetProjection(proj) ndvi_data.FlushCache() ndvi_data=None print("DONE")
Then I use gdal to merge each of the resultant .tif files with an NDVI band into a single file, then clip that file with the outline of Bicuar National Park[1].
1: https://www.protectedplanet.net/#thematic-areas
#!/bin/bash echo "Merging tif files" gdal_merge.py -n 0 -a_nodata 0 *_NDVI.tif -o ndvi_merge_o.tif gdalwrap -t_srs '+proj=longlat +datum=WGS84' ndvi_merge_0.tif ndvi_merge_0_longlat.tif gdalwarp -cutline 'bicuar_shp/WDPA_Mar2018_protected_area_350-shapefile-polygons.shp' -crop_to_cutline -dstalpha ndvi_merge_0_longlat.tif ndvi_merge_0_longlat_bicuar.tif
Then I can use an R script to look at the distribution of NDVI across the park
# Packages library(raster) library(rgdal) # Import data ---- ndvi_tif_bicuar <- raster("ndvi_merge_0_longlat_bicuar.tif") ndvi_vec <- getValues(ndvi_tif_bicuar) hist(ndvi_vec, breaks = 100)
I can also experiment with plotting areas of the park within a certain threshold of NDVI
ndvi_thresh <- ndvi_tif_bicuar[ndvi_tif_bicuar < 0.6] <- NA plot(ndvi_thresh)