💾 Archived View for gmi.noulin.net › rfc › rfc6931.gmi captured on 2024-08-19 at 03:07:30. Gemini links have been rewritten to link to archived content
⬅️ Previous capture (2023-01-30)
-=-=-=-=-=-=-
Obsoletes:
Obsoleted by:
Internet Engineering Task Force (IETF) D. Eastlake 3rd Request for Comments: 6931 Huawei Obsoletes: 4051 April 2013 Category: Standards Track ISSN: 2070-1721 Additional XML Security Uniform Resource Identifiers (URIs) Abstract This document expands, updates, and establishes an IANA registry for the list of URIs intended for use with XML digital signatures, encryption, canonicalization, and key management. These URIs identify algorithms and types of information. This document obsoletes RFC 4051. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6931. Copyright Notice Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Eastlake Standards Track [Page 1] RFC 6931 Additional XML Security URIs April 2013 Table of Contents 1. Introduction ....................................................3 1.1. Terminology ................................................4 1.2. Acronyms ...................................................4 2. Algorithms ......................................................5 2.1. DigestMethod (Hash) Algorithms .............................5 2.1.1. MD5 .................................................5 2.1.2. SHA-224 .............................................6 2.1.3. SHA-384 .............................................6 2.1.4. Whirlpool ...........................................6 2.1.5. New SHA Functions ...................................7 2.2. SignatureMethod MAC Algorithms .............................7 2.2.1. HMAC-MD5 ............................................7 2.2.2. HMAC SHA Variations .................................8 2.2.3. HMAC-RIPEMD160 ......................................8 2.3. SignatureMethod Public-Key Signature Algorithms ............9 2.3.1. RSA-MD5 .............................................9 2.3.2. RSA-SHA256 .........................................10 2.3.3. RSA-SHA384 .........................................10 2.3.4. RSA-SHA512 .........................................10 2.3.5. RSA-RIPEMD160 ......................................11 2.3.6. ECDSA-SHA*, ECDSA-RIPEMD160, ECDSA-Whirlpool .......11 2.3.7. ESIGN-SHA* .........................................12 2.3.8. RSA-Whirlpool ......................................12 2.3.9. RSASSA-PSS with Parameters .........................13 2.3.10. RSASSA-PSS without Parameters .....................14 2.3.11. RSA-SHA224 ........................................15 2.4. Minimal Canonicalization ..................................15 2.5. Transform Algorithms ......................................16 2.5.1. XPointer ...........................................16 2.6. EncryptionMethod Algorithms ...............................17 2.6.1. ARCFOUR Encryption Algorithm .......................17 2.6.2. Camellia Block Encryption ..........................17 2.6.3. Camellia Key Wrap ..................................17 2.6.4. PSEC-KEM ...........................................18 2.6.5. SEED Block Encryption ..............................19 2.6.6. SEED Key Wrap ......................................19 3. KeyInfo ........................................................19 3.1. PKCS #7 Bag of Certificates and CRLs ......................20 3.2. Additional RetrievalMethod Type Values ....................20 4. Indexes ........................................................20 4.1. Fragment Index ............................................21 4.2. URI Index .................................................24 5. Allocation Considerations ......................................27 5.1. W3C Allocation Considerations .............................27 5.2. IANA Considerations .......................................28 6. Security Considerations ........................................28 Eastlake Standards Track [Page 2] RFC 6931 Additional XML Security URIs April 2013 7. Acknowledgements ...............................................29 Appendix A. Changes from RFC 4051 .................................30 Normative References ..............................................31 Informative References ............................................33 1. Introduction XML digital signatures, canonicalization, and encryption have been standardized by the W3C and by the joint IETF/W3C XMLDSIG working group [W3C]. All of these are now W3C Recommendations and some are also RFCs. They are available as follows: RFC Status W3C REC Topic ----------- ------- ----- [RFC3275] [XMLDSIG10] XML Digital Signatures Draft Standard [RFC3076] [CANON10] Canonical XML Informational - - - - - - [XMLENC10] XML Encryption 1.0 [RFC3741] [XCANON] Exclusive XML Canonicalization 1.0 Informational All of these documents and recommendations use URIs [RFC3986] to identify algorithms and keying information types. The W3C has subsequently produced updated XML Signature 1.1 [XMLDSIG11], Canonical XML 1.1 [CANON11], and XML Encryption 1.1 [XMLENC11] versions, as well as a new XML Signature Properties specification [XMLDSIG-PROP]. All camel-case element names herein, such as DigestValue, are from these documents. This document is an updated convenient reference list of URIs and corresponding algorithms in which there is expressed interest. Since the previous list [RFC4051] was issued in 2005, significant new cryptographic algorithms of interest to XML security, for some of which the URI is only specified in this document, have been added. This document obsoletes [RFC4051]. All of the URIs appear in the indexes in Section 4. Only the URIs that were added by [RFC4051] or this document have a subsection in Section 2 or 3, with the exception of Minimal Canonicalization (Section 2.4), for example, use of Eastlake Standards Track [Page 3] RFC 6931 Additional XML Security URIs April 2013 SHA-256 is defined in [XMLENC11] and hence there is no subsection on that algorithm here, but its URI is included in the indexes in Section 4. Specification in this document of the URI representing an algorithm does not imply endorsement of the algorithm for any particular purpose. A protocol specification, which this is not, generally gives algorithm and implementation requirements for the protocol. Security considerations for algorithms are constantly evolving, as documented elsewhere. This specification simply provides some URIs and relevant formatting for when those URIs are used. Note that progressing XML Digital Signature [RFC3275] along the Standards Track required removal of any algorithms from the original version [RFC3075] for which there was not demonstrated interoperability. This required removal of the Minimal Canonicalization algorithm, in which there appears to be continued interest. The URI for Minimal Canonicalization was included in [RFC4051] and is included here. 1.1. Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. This document is not intended to change the algorithm implementation requirements of any IETF or W3C document. Use of [RFC2119] terminology is intended to be only such as is already stated or implied by other authoritative documents. 1.2. Acronyms The following acronyms are used in this document: HMAC - Keyed-Hashing MAC [RFC2104] IETF - Internet Engineering Task Force <www.ietf.org> MAC - Message Authentication Code MD - Message Digest NIST - United States National Institute of Standards and Technology <www.nist.gov> RC - Rivest Cipher Eastlake Standards Track [Page 4] RFC 6931 Additional XML Security URIs April 2013 RSA - Rivest, Shamir, and Adleman SHA - Secure Hash Algorithm URI - Uniform Resource Identifier [RFC3986] W3C - World Wide Web Consortium <www.w3.org> XML - eXtensible Markup Language 2. Algorithms The URI [RFC3986] that was dropped from the XML Digital Signature standard due to the transition from Proposed Standard to Draft Standard [RFC3275] is included in Section 2.4 below with its original http://www.w3.org/2000/09/xmldsig# prefix so as to avoid changing the XMLDSIG standard's namespace. Additional algorithms in [RFC4051] were given URIs that start with http://www.w3.org/2001/04/xmldsig-more# while further algorithms added in this document are given URIs that start with http://www.w3.org/2007/05/xmldsig-more# In addition, for ease of reference, this document includes in the indexes in Section 4 many cryptographic algorithm URIs from several XML security documents using the namespaces with which they are defined in those documents. For example, 2000/09/xmldsig# for some URIs specified in [RFC3275] and 2001/04/xmlenc# for some URIs specified in [XMLENC10]. See also [XMLSECXREF]. 2.1. DigestMethod (Hash) Algorithms These algorithms are usable wherever a DigestMethod element occurs. 2.1.1. MD5 Identifier: http://www.w3.org/2001/04/xmldsig-more#md5 Eastlake Standards Track [Page 5] RFC 6931 Additional XML Security URIs April 2013 The MD5 algorithm [RFC1321] takes no explicit parameters. An example of an MD5 DigestAlgorithm element is: <DigestAlgorithm Algorithm="http://www.w3.org/2001/04/xmldsig-more#md5"/> An MD5 digest is a 128-bit string. The content of the DigestValue element SHALL be the base64 [RFC2045] encoding of this bit string viewed as a 16-octet stream. See [RFC6151] for MD5 security considerations. 2.1.2. SHA-224 Identifier: http://www.w3.org/2001/04/xmldsig-more#sha224 The SHA-224 algorithm [FIPS180-4] [RFC6234] takes no explicit parameters. An example of a SHA-224 DigestAlgorithm element is: <DigestAlgorithm Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha224" /> A SHA-224 digest is a 224-bit string. The content of the DigestValue element SHALL be the base64 [RFC2045] encoding of this string viewed as a 28-octet stream. 2.1.3. SHA-384 Identifier: http://www.w3.org/2001/04/xmldsig-more#sha384 The SHA-384 algorithm [FIPS180-4] takes no explicit parameters. An example of a SHA-384 DigestAlgorithm element is: <DigestAlgorithm Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha384" /> A SHA-384 digest is a 384-bit string. The content of the DigestValue element SHALL be the base64 [RFC2045] encoding of this string viewed as a 48-octet stream. 2.1.4. Whirlpool Identifier: http://www.w3.org/2007/05/xmldsig-more#whirlpool Eastlake Standards Track [Page 6] RFC 6931 Additional XML Security URIs April 2013 The Whirlpool algorithm [10118-3] takes no explicit parameters. A Whirlpool digest is a 512-bit string. The content of the DigestValue element SHALL be the base64 [RFC2045] encoding of this string viewed as a 64-octet stream. 2.1.5. New SHA Functions Identifiers: http://www.w3.org/2007/05/xmldsig-more#sha3-224 http://www.w3.org/2007/05/xmldsig-more#sha3-256 http://www.w3.org/2007/05/xmldsig-more#sha3-384 http://www.w3.org/2007/05/xmldsig-more#sha3-512 NIST has recently completed a hash function competition for an alternative to the SHA family. The Keccak-f[1600] algorithm was selected [Keccak] [SHA-3]. This hash function is commonly referred to as "SHA-3", and this section is a space holder and reservation of URIs for future information on Keccak use in XML security. A SHA-3 224, 256, 384, and 512 digest is a 224-, 256-, 384-, and 512-bit string, respectively. The content of the DigestValue element SHALL be the base64 [RFC2045] encoding of this string viewed as a 28-, 32-, 48-, and 64-octet stream, respectively. 2.2. SignatureMethod MAC Algorithms This section covers SignatureMethod MAC (Message Authentication Code) Algorithms. Note: Some text in this section is duplicated from [RFC3275] for the convenience of the reader. RFC 3275 is normative in case of conflict. 2.2.1. HMAC-MD5 Identifier: http://www.w3.org/2001/04/xmldsig-more#hmac-md5 The HMAC algorithm [RFC2104] takes the truncation length in bits as a parameter; if the parameter is not specified, then all the bits of the hash are output. An example of an HMAC-MD5 SignatureMethod element is as follows: <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#hmac-md5"> <HMACOutputLength>112</HMACOutputLength> </SignatureMethod> Eastlake Standards Track [Page 7] RFC 6931 Additional XML Security URIs April 2013 The output of the HMAC algorithm is ultimately the output (possibly truncated) of the chosen digest algorithm. This value SHALL be base64 [RFC2045] encoded in the same straightforward fashion as the output of the digest algorithms. Example: the SignatureValue element for the HMAC-MD5 digest 9294727A 3638BB1C 13F48EF8 158BFC9D from the test vectors in [RFC2104] would be kpRyejY4uxwT9I74FYv8nQ== Schema Definition: <simpleType name="HMACOutputLength"> <restriction base="integer"/> </simpleType> DTD: <!ELEMENT HMACOutputLength (#PCDATA) > The Schema Definition and DTD immediately above are copied from [RFC3275]. See [RFC6151] for HMAC-MD5 security considerations. 2.2.2. HMAC SHA Variations Identifiers: http://www.w3.org/2001/04/xmldsig-more#hmac-sha224 http://www.w3.org/2001/04/xmldsig-more#hmac-sha256 http://www.w3.org/2001/04/xmldsig-more#hmac-sha384 http://www.w3.org/2001/04/xmldsig-more#hmac-sha512 SHA-224, SHA-256, SHA-384, and SHA-512 [FIPS180-4] [RFC6234] can also be used in HMAC as described in Section 2.2.1 above for HMAC-MD5. 2.2.3. HMAC-RIPEMD160 Identifier: http://www.w3.org/2001/04/xmldsig-more#hmac-ripemd160 RIPEMD-160 [10118-3] can also be used in HMAC as described in Section 2.2.1 above for HMAC-MD5. Eastlake Standards Track [Page 8] RFC 6931 Additional XML Security URIs April 2013 2.3. SignatureMethod Public-Key Signature Algorithms These algorithms are distinguished from those in Section 2.2 above in that they use public-key methods. That is to say, the verification key is different from and not feasibly derivable from the signing key. 2.3.1. RSA-MD5 Identifier: http://www.w3.org/2001/04/xmldsig-more#rsa-md5 This implies the PKCS#1 v1.5 padding algorithm described in [RFC3447]. An example of use is <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-md5" /> The SignatureValue content for an RSA-MD5 signature is the base64 [RFC2045] encoding of the octet string computed as per [RFC3447], Section 8.2.1, signature generation for the RSASSA-PKCS1-v1_5 signature scheme. As specified in the EMSA-PKCS1-V1_5-ENCODE function in [RFC3447], Section 9.2, the value input to the signature function MUST contain a pre-pended algorithm object identifier for the hash function, but the availability of an ASN.1 parser and recognition of OIDs is not required of a signature verifier. The PKCS#1 v1.5 representation appears as: CRYPT (PAD (ASN.1 (OID, DIGEST (data)))) Note that the padded ASN.1 will be of the following form: 01 | FF* | 00 | prefix | hash Vertical bar ("|") represents concatenation. "01", "FF", and "00" are fixed octets of the corresponding hexadecimal value, and the asterisk ("*") after "FF" indicates repetition. "hash" is the MD5 digest of the data. "prefix" is the ASN.1 BER MD5 algorithm designator prefix required in PKCS #1 [RFC3447], that is, hex 30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04 10 This prefix is included to make it easier to use standard cryptographic libraries. The FF octet MUST be repeated enough times that the value of the quantity being CRYPTed is exactly one octet shorter than the RSA modulus. See [RFC6151] for MD5 security considerations. Eastlake Standards Track [Page 9] RFC 6931 Additional XML Security URIs April 2013 2.3.2. RSA-SHA256 Identifier: http://www.w3.org/2001/04/xmldsig-more#rsa-sha256 This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described in Section 2.3.1, but with the ASN.1 BER SHA-256 algorithm designator prefix. An example of use is <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" /> 2.3.3. RSA-SHA384 Identifier: http://www.w3.org/2001/04/xmldsig-more#rsa-sha384 This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described in Section 2.3.1, but with the ASN.1 BER SHA-384 algorithm designator prefix. An example of use is <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha384" /> Because it takes about the same effort to calculate a SHA-384 message digest as it does a SHA-512 message digest, it is suggested that RSA-SHA512 be used in preference to RSA-SHA384 where possible. 2.3.4. RSA-SHA512 Identifier: http://www.w3.org/2001/04/xmldsig-more#rsa-sha512 This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described in Section 2.3.1, but with the ASN.1 BER SHA-512 algorithm designator prefix. An example of use is <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha512" /> Eastlake Standards Track [Page 10] RFC 6931 Additional XML Security URIs April 2013 2.3.5. RSA-RIPEMD160 Identifier: http://www.w3.org/2001/04/xmldsig-more#rsa-ripemd160 This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described in Section 2.3.1, but with the ASN.1 BER RIPEMD160 algorithm designator prefix. An example of use is <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-ripemd160" /> 2.3.6. ECDSA-SHA*, ECDSA-RIPEMD160, ECDSA-Whirlpool Identifiers: http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1 http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha224 http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256 http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384 http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512 http://www.w3.org/2007/05/xmldsig-more#ecdsa-ripemd160 http://www.w3.org/2007/05/xmldsig-more#ecdsa-whirlpool The Elliptic Curve Digital Signature Algorithm (ECDSA) [FIPS180-4] is the elliptic curve analogue of the Digital Signature Algorithm (DSA) signature method, i.e., the Digital Signature Standard (DSS). It takes no explicit parameters. For detailed specifications of how to use it with SHA hash functions and XML Digital Signature, please see [X9.62] and [RFC4050]. The #ecdsa-ripemd160 and #ecdsa-whirlpool fragments in the new namespace identifies a signature method processed in the same way as specified by the #ecdsa-sha1 fragment of this namespace, with the exception that RIPEMD160 or Whirlpool is used instead of SHA-1. The output of the ECDSA algorithm consists of a pair of integers usually referred by the pair (r, s). The signature value consists of the base64 encoding of the concatenation of two octet streams that respectively result from the octet-encoding of the values r and s in that order. Conversion from integer to octet stream must be done according to the I2OSP operation defined in the [RFC3447] specification with the l parameter equal to the size of the base point order of the curve in bytes (e.g., 32 for the P-256 curve and 66 for the P-521 curve [FIPS186-3]). For an introduction to elliptic curve cryptographic algorithms, see [RFC6090] and note the errata (Errata ID 2773-2777). Eastlake Standards Track [Page 11] RFC 6931 Additional XML Security URIs April 2013 2.3.7. ESIGN-SHA* Identifiers: http://www.w3.org/2001/04/xmldsig-more#esign-sha1 http://www.w3.org/2001/04/xmldsig-more#esign-sha224 http://www.w3.org/2001/04/xmldsig-more#esign-sha256 http://www.w3.org/2001/04/xmldsig-more#esign-sha384 http://www.w3.org/2001/04/xmldsig-more#esign-sha512 The ESIGN algorithm specified in [IEEEP1363a] is a signature scheme based on the integer factorization problem. It is much faster than previous digital signature schemes, so ESIGN can be implemented on smart cards without special co-processors. An example of use is <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#esign-sha1" /> 2.3.8. RSA-Whirlpool Identifier: http://www.w3.org/2007/05/xmldsig-more#rsa-whirlpool As in the definition of the RSA-SHA1 algorithm in [XMLDSIG11], the designator "RSA" means the RSASSA-PKCS1-v1_5 algorithm as defined in [RFC3447]. When identified through the #rsa-whirlpool fragment identifier, Whirlpool is used as the hash algorithm instead. Use of the ASN.1 BER Whirlpool algorithm designator is implied. That designator is hex 30 4e 30 0a 06 06 28 cf 06 03 00 37 05 00 04 40 as an explicit octet sequence. This corresponds to OID 1.0.10118.3.0.55 defined in [10118-3]. An example of use is <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-whirlpool" /> Eastlake Standards Track [Page 12] RFC 6931 Additional XML Security URIs April 2013 2.3.9. RSASSA-PSS with Parameters Identifiers: http://www.w3.org/2007/05/xmldsig-more#rsa-pss http://www.w3.org/2007/05/xmldsig-more#MGF1 These identifiers imply the PKCS#1 EMSA-PSS encoding algorithm [RFC3447]. The RSASSA-PSS algorithm takes the digest method (hash function), a mask generation function, the salt length in bytes (SaltLength), and the trailer field as explicit parameters. Algorithm identifiers for hash functions specified in XML encryption [XMLENC11] [XMLDSIG11] and in Section 2.1 are considered to be valid algorithm identifiers for hash functions. According to [RFC3447], the default value for the digest function is SHA-1, but due to the discovered weakness of SHA-1 [RFC6194], it is recommended that SHA-256 or a stronger hash function be used. Notwithstanding [RFC3447], SHA-256 is the default to be used with these SignatureMethod identifiers if no hash function has been specified. The default salt length for these SignatureMethod identifiers if the SaltLength is not specified SHALL be the number of octets in the hash value of the digest method, as recommended in [RFC4055]. In a parameterized RSASSA-PSS signature the ds:DigestMethod and the SaltLength parameters usually appear. If they do not, the defaults make this equivalent to http://www.w3.org/2007/05/xmldsig-more#sha256-rsa-MGF1 (see Section 2.3.10). The TrailerField defaults to 1 (0xBC) when omitted. Eastlake Standards Track [Page 13] RFC 6931 Additional XML Security URIs April 2013 Schema Definition (target namespace http://www.w3.org/2007/05/xmldsig-more#): <xs:element name="RSAPSSParams" type="pss:RSAPSSParamsType"> <xs:annotation> <xs:documentation> Top level element that can be used in xs:any namespace="#other" wildcard of ds:SignatureMethod content. </xs:documentation> </xs:annotation> </xs:element> <xs:complexType name="RSAPSSParamsType"> <xs:sequence> <xs:element ref="ds:DigestMethod" minOccurs="0"/> <xs:element name="MaskGenerationFunction" type="pss:MaskGenerationFunctionType" minOccurs="0"/> <xs:element name="SaltLength" type="xs:int" minOccurs="0"/> <xs:element name="TrailerField" type="xs:int" minOccurs="0"/> </xs:sequence> </xs:complexType> <xs:complexType name="MaskGenerationFunctionType"> <xs:sequence> <xs:element ref="ds:DigestMethod" minOccurs="0"/> </xs:sequence> <xs:attribute name="Algorithm" type="xs:anyURI" default="http://www.w3.org/2007/05/xmldsig-more#MGF1"/> </xs:complexType> 2.3.10. RSASSA-PSS without Parameters [RFC3447] currently specifies only one mask generation function MGF1 based on a hash function. Although [RFC3447] allows for parameterization, the default is to use the same hash function as the digest method function. Only this default approach is supported by this section; therefore, the definition of a mask generation function type is not needed yet. The same applies to the trailer field. There is only one value (0xBC) specified in [RFC3447]. Hence, this default parameter must be used for signature generation. The default salt length is the length of the hash function. Identifiers: http://www.w3.org/2007/05/xmldsig-more#sha3-224-rsa-MGF1 http://www.w3.org/2007/05/xmldsig-more#sha3-256-rsa-MGF1 http://www.w3.org/2007/05/xmldsig-more#sha3-384-rsa-MGF1 http://www.w3.org/2007/05/xmldsig-more#sha3-512-rsa-MGF1 Eastlake Standards Track [Page 14] RFC 6931 Additional XML Security URIs April 2013 http://www.w3.org/2007/05/xmldsig-more#md2-rsa-MGF1 http://www.w3.org/2007/05/xmldsig-more#md5-rsa-MGF1 http://www.w3.org/2007/05/xmldsig-more#sha1-rsa-MGF1 http://www.w3.org/2007/05/xmldsig-more#sha224-rsa-MGF1 http://www.w3.org/2007/05/xmldsig-more#sha256-rsa-MGF1 http://www.w3.org/2007/05/xmldsig-more#sha384-rsa-MGF1 http://www.w3.org/2007/05/xmldsig-more#sha512-rsa-MGF1 http://www.w3.org/2007/05/xmldsig-more#ripemd128-rsa-MGF1 http://www.w3.org/2007/05/xmldsig-more#ripemd160-rsa-MGF1 http://www.w3.org/2007/05/xmldsig-more#whirlpool-rsa-MGF1 An example of use is <SignatureMethod Algorithm= "http://www.w3.org/2007/05/xmldsig-more#SHA3-256-rsa-MGF1" /> 2.3.11. RSA-SHA224 Identifier: http://www.w3.org/2007/05/xmldsig-more#rsa-sha224 This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described in Section 2.3.1, but with the ASN.1 BER SHA-224 algorithm designator prefix. An example of use is <SignatureMethod Algorithm="http://www.w3.org/2007/05/xmldsig-more#rsa-sha224" /> Because it takes about the same effort to calculate a SHA-224 message digest as it does a SHA-256 message digest, it is suggested that RSA-SHA256 be used in preference to RSA-SHA224 where possible. 2.4. Minimal Canonicalization Thus far, two independent interoperable implementations of Minimal Canonicalization have not been announced. Therefore, when XML Digital Signature was advanced along the Standards Track from [RFC3075] to [RFC3275], Minimal Canonicalization was dropped. However, there is still interest. For its definition, see Section 6.5.1 of [RFC3075]. For reference, its identifier remains: http://www.w3.org/2000/09/xmldsig#minimal Eastlake Standards Track [Page 15] RFC 6931 Additional XML Security URIs April 2013 2.5. Transform Algorithms Note that all CanonicalizationMethod algorithms can also be used as transform algorithms. 2.5.1. XPointer Identifier: http://www.w3.org/2001/04/xmldsig-more#xptr This transform algorithm takes an [XPointer] as an explicit parameter. An example of use is: <Transform Algorithm="http://www.w3.org/2001/04/xmldsig-more/xptr"> <XPointer xmlns="http://www.w3.org/2001/04/xmldsig-more/xptr"> xpointer(id("foo")) xmlns(bar=http://foobar.example) xpointer(//bar:Zab[@Id="foo"]) </XPointer> </Transform> Schema Definition: <element name="XPointer" type="string"/> DTD: <!ELEMENT XPointer (#PCDATA) > Input to this transform is an octet stream (which is then parsed into XML). Output from this transform is a node set; the results of the XPointer are processed as defined in the XMLDSIG specification [RFC3275] for a same-document XPointer. Eastlake Standards Track [Page 16] RFC 6931 Additional XML Security URIs April 2013 2.6. EncryptionMethod Algorithms This subsection gives identifiers and information for several EncryptionMethod Algorithms. 2.6.1. ARCFOUR Encryption Algorithm Identifier: http://www.w3.org/2001/04/xmldsig-more#arcfour ARCFOUR is a fast, simple stream encryption algorithm that is compatible with RSA Security's RC4 algorithm [RC4]. An example EncryptionMethod element using ARCFOUR is <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#arcfour"> <KeySize>40</KeySize> </EncryptionMethod> Note that Arcfour makes use of the generic KeySize parameter specified and defined in [XMLENC11]. 2.6.2. Camellia Block Encryption Identifiers: http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc http://www.w3.org/2001/04/xmldsig-more#camellia192-cbc http://www.w3.org/2001/04/xmldsig-more#camellia256-cbc Camellia is a block cipher with the same interface as the AES [Camellia] [RFC3713]; it has a 128-bit block size and 128-, 192-, and 256-bit key sizes. In XML encryption, Camellia is used in the same way as the AES: it is used in the Cipher Block Chaining (CBC) mode with a 128-bit initialization vector (IV). The resulting cipher text is prefixed by the IV. If included in XML output, it is then base64 encoded. An example Camellia EncryptionMethod is as follows: <EncryptionMethod Algorithm= "http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc" /> 2.6.3. Camellia Key Wrap Identifiers: http://www.w3.org/2001/04/xmldsig-more#kw-camellia128 http://www.w3.org/2001/04/xmldsig-more#kw-camellia192 http://www.w3.org/2001/04/xmldsig-more#kw-camellia256 Eastlake Standards Track [Page 17] RFC 6931 Additional XML Security URIs April 2013 Camellia [Camellia] [RFC3713] key wrap is identical to the AES key wrap algorithm [RFC3394] specified in the XML Encryption standard with "AES" replaced by "Camellia". As with AES key wrap, the check value is 0xA6A6A6A6A6A6A6A6. The algorithm is the same whatever the size of the Camellia key used in wrapping, called the "key encrypting key" or "KEK". If Camellia is supported, it is particularly suggested that wrapping 128-bit keys with a 128-bit KEK and wrapping 256-bit keys with a 256-bit KEK be supported. An example of use is: <EncryptionMethod Algorithm= "http://www.w3.org/2001/04/xmldsig-more#kw-camellia128" /> 2.6.4. PSEC-KEM Identifier: http://www.w3.org/2001/04/xmldsig-more#psec-kem The PSEC-KEM algorithm, specified in [18033-2], is a key encapsulation mechanism using elliptic curve encryption. An example of use is: <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#psec-kem"> <ECParameters> <Version>version</Version> <FieldID>id</FieldID> <Curve>curve</Curve> <Base>base</Base> <Order>order</Order> <Cofactor>cofactor</Cofactor> </ECParameters> </EncryptionMethod> See [18033-2] for information on the parameters above. Eastlake Standards Track [Page 18] RFC 6931 Additional XML Security URIs April 2013 2.6.5. SEED Block Encryption Identifier: http://www.w3.org/2007/05/xmldsig-more#seed128-cbc SEED [RFC4269] is a 128-bit block size with 128-bit key sizes. In XML Encryption, SEED can be used in the Cipher Block Chaining (CBC) mode with a 128-bit initialization vector (IV). The resulting cipher text is prefixed by the IV. If included in XML output, it is then base64 encoded. An example SEED EncryptionMethod is as follows: <EncryptionMethod Algorithm="http://www.w3.org/2007/05/xmldsig-more#seed128-cbc" /> 2.6.6. SEED Key Wrap Identifier: http://www.w3.org/2007/05/xmldsig-more#kw-seed128 Key wrapping with SEED is identical to Section 2.2.1 of [RFC3394] with "AES" replaced by "SEED". The algorithm is specified in [RFC4010]. The implementation of SEED is optional. The default initial value is 0xA6A6A6A6A6A6A6A6. An example of use is: <EncryptionMethod Algorithm= "http://www.w3.org/2007/05/xmldsig-more#kw-seed128" /> 3. KeyInfo In Section 3.1 below a new KeyInfo element child is specified, while in Section 3.2 additional KeyInfo Type values for use in RetrievalMethod are specified. Eastlake Standards Track [Page 19] RFC 6931 Additional XML Security URIs April 2013 3.1. PKCS #7 Bag of Certificates and CRLs A PKCS #7 [RFC2315] "signedData" can also be used as a bag of certificates and/or certificate revocation lists (CRLs). The PKCS7signedData element is defined to accommodate such structures within KeyInfo. The binary PKCS #7 structure is base64 [RFC2045] encoded. Any signer information present is ignored. The following is an example [RFC3092], eliding the base64 data: <foo:PKCS7signedData xmlns:foo="http://www.w3.org/2001/04/xmldsig-more"> ... </foo:PKCS7signedData> 3.2. Additional RetrievalMethod Type Values The Type attribute of RetrievalMethod is an optional identifier for the type of data to be retrieved. The result of dereferencing a RetrievalMethod reference for all KeyInfo types with an XML structure is an XML element or document with that element as the root. The various "raw" key information types return a binary value. Thus, they require a Type attribute because they are not unambiguously parsable. Identifiers: http://www.w3.org/2001/04/xmldsig-more#KeyName http://www.w3.org/2001/04/xmldsig-more#KeyValue http://www.w3.org/2001/04/xmldsig-more#PKCS7signedData http://www.w3.org/2001/04/xmldsig-more#rawPGPKeyPacket http://www.w3.org/2001/04/xmldsig-more#rawPKCS7signedData http://www.w3.org/2001/04/xmldsig-more#rawSPKISexp http://www.w3.org/2001/04/xmldsig-more#rawX509CRL http://www.w3.org/2001/04/xmldsig-more#RetrievalMethod 4. Indexes The following subsections provide an index by URI and by fragment identifier (the portion of the URI after "#") of the algorithm and KeyInfo URIs defined in this document and in the standards (plus the one KeyInfo child element name defined in this document). The "Sec/Doc" column has the section of this document or, if not specified in this document, the document where the item is specified. See also [XMLSECXREF]. Eastlake Standards Track [Page 20] RFC 6931 Additional XML Security URIs April 2013 4.1. Fragment Index The initial "http://www.w3.org/" part of the URI is not included below. The first six entries have a null fragment identifier or no fragment identifier. Fragment URI Sec/Doc --------- ---- -------- 2002/06/xmldsig-filter2 [XPATH] 2006/12/xmlc12n11# [CANON11] TR/1999/REC-xslt-19991116 [XSLT] TR/1999/REC-xpath-19991116 [XPATH] TR/2001/06/xml-exc-c14n# [XCANON] TR/2001/REC-xml-c14n-20010315 [CANON10] TR/2001/REC-xmlschema-1-20010502 [Schema] aes128-cbc 2001/04/xmlenc#aes128-cbc [XMLENC11] aes128-gcm 2009/xmlenc11#aes128-gcm [XMLENC11] aes192-cbc 2001/04/xmlenc#aes192-cbc [XMLENC11] aes192-gcm 2009/xmlenc11#aes192-gcm [XMLENC11] aes256-cbc 2001/04/xmlenc#aes256-cbc [XMLENC11] aes256-gcm 2009/xmlenc11#aes256-gcm [XMLENC11] arcfour 2001/04/xmldsig-more#arcfour 2.6.1 base64 2000/09/xmldsig#base64 [RFC3275] camellia128-cbc 2001/04/xmldsig-more#camellia128-cbc 2.6.2 camellia192-cbc 2001/04/xmldsig-more#camellia192-cbc 2.6.2 camellia256-cbc 2001/04/xmldsig-more#camellia256-cbc 2.6.2 ConcatKDF 2009/xmlenc11#ConcatKDF [XMLENC11] decrypt#XML 2002/07/decrypt#XML [DECRYPT] decrypt#Binary 2002/07/decrypt#Binary [DECRYPT] DEREncodedKeyValue 2009/xmldsig11#DEREncodedKeyValue [XMLDSIG11] dh 2001/04/xmlenc#dh [XMLENC11] dh-es 2009/xmlenc11#dh-es [XMLENC11] dsa-sha1 2000/09/xmldsig#dsa-sha1 [RFC3275] dsa-sha256 2009/xmldsig11#dsa-sha256 [XMLDSIG11] DSAKeyValue 2000/09/xmldsig#DSAKeyValue [XMLDSIG11] ECDH-ES 2009/xmlenc11#ECDH-ES [XMLENC11] ecdsa-ripemd160 2007/05/xmldsig-more#ecdsa-ripemd160 2.3.6 ecdsa-sha1 2001/04/xmldsig-more#ecdsa-sha1 2.3.6 ecdsa-sha224 2001/04/xmldsig-more#ecdsa-sha224 2.3.6 ecdsa-sha256 2001/04/xmldsig-more#ecdsa-sha256 2.3.6 ecdsa-sha384 2001/04/xmldsig-more#ecdsa-sha384 2.3.6 ecdsa-sha512 2001/04/xmldsig-more#ecdsa-sha512 2.3.6 Eastlake Standards Track [Page 21] RFC 6931 Additional XML Security URIs April 2013 ecdsa-whirlpool 2007/05/xmldsig-more#ecdsa-whirlpool 2.3.5 ecies-kem 2010/xmlsec-ghc#ecies-kem [GENERIC] ECKeyValue 2009/xmldsig11#ECKeyValue [XMLDSIG11] enveloped-signature 2000/09/xmldsig#enveloped-signature [RFC3275] esign-sha1 2001/04/xmldsig-more#esign-sha1 2.3.7 esign-sha224 2001/04/xmldsig-more#esign-sha224 2.3.7 esign-sha256 2001/04/xmldsig-more#esign-sha256 2.3.7 esign-sha384 2001/04/xmldsig-more#esign-sha384 2.3.7 esign-sha512 2001/04/xmldsig-more#esign-sha512 2.3.7 generic-hybrid 2010/xmlsec-ghc#generic-hybrid [GENERIC] hmac-md5 2001/04/xmldsig-more#hmac-md5 2.2.1 hmac-ripemd160 2001/04/xmldsig-more#hmac-ripemd160 2.2.3 hmac-sha1 2000/09/xmldsig#hmac-sha1 [RFC3275] hmac-sha224 2001/04/xmldsig-more#hmac-sha224 2.2.2 hmac-sha256 2001/04/xmldsig-more#hmac-sha256 2.2.2 hmac-sha384 2001/04/xmldsig-more#hmac-sha384 2.2.2 hmac-sha512 2001/04/xmldsig-more#hmac-sha512 2.2.2 KeyName 2001/04/xmldsig-more#KeyName 3.2 KeyValue 2001/04/xmldsig-more#KeyValue 3.2 kw-aes128 2001/04/xmlenc#kw-aes128 [XMLENC11] kw-aes128-pad 2009/xmlenc11#kw-aes-128-pad [XMLENC11] kw-aes192 2001/04/xmlenc#kw-aes192 [XMLENC11] kw-aes192-pad 2009/xmlenc11#kw-aes-192-pad [XMLENC11] kw-aes256 2001/04/xmlenc#kw-aes256 [XMLENC11] kw-aes256-pad 2009/xmlenc11#kw-aes-256-pad [XMLENC11] kw-camellia128 2001/04/xmldsig-more#kw-camellia128 2.6.3 kw-camellia192 2001/04/xmldsig-more#kw-camellia192 2.6.3 kw-camellia256 2001/04/xmldsig-more#kw-camellia256 2.6.3 kw-seed128 2007/05/xmldsig-more#kw-seed128 2.6.6 md2-rsa-MGF1 2007/05/xmldsig-more#md2-rsa-MGF1 2.3.10 md5 2001/04/xmldsig-more#md5 2.1.1 md5-rsa-MGF1 2007/05/xmldsig-more#md5-rsa-MGF1 2.3.10 MGF1 2007/05/xmldsig-more#MGF1 2.3.9 mgf1sha1 2009/xmlenc11#mgf1sha1 [XMLENC11] mgf1sha224 2009/xmlenc11#mgf1sha224 [XMLENC11] mgf1sha256 2009/xmlenc11#mgf1sha256 [XMLENC11] mgf1sha384 2009/xmlenc11#mgf1sha384 [XMLENC11] mgf1sha512 2009/xmlenc11#mgf1sha512 [XMLENC11] MgmtData 2000/09/xmldsig#MgmtData [XMLDSIG11] minimal 2000/09/xmldsig#minimal 2.4 pbkdf2 2009/xmlenc11#pbkdf2 [XMLENC11] PGPData 2000/09/xmldsig#PGPData [XMLDSIG11] PKCS7signedData 2001/04/xmldsig-more#PKCS7signedData 3.1 Eastlake Standards Track [Page 22] RFC 6931 Additional XML Security URIs April 2013 PKCS7signedData 2001/04/xmldsig-more#PKCS7signedData 3.2 psec-kem 2001/04/xmldsig-more#psec-kem 2.6.4 rawPGPKeyPacket 2001/04/xmldsig-more#rawPGPKeyPacket 3.2 rawPKCS7signedData 2001/04/xmldsig-more#rawPKCS7signedData 3.2 rawSPKISexp 2001/04/xmldsig-more#rawSPKISexp 3.2 rawX509Certificate 2000/09/xmldsig#rawX509Certificate [RFC3275] rawX509CRL 2001/04/xmldsig-more#rawX509CRL 3.2 RetrievalMethod 2001/04/xmldsig-more#RetrievalMethod 3.2 ripemd128-rsa-MGF1 2007/05/xmldsig-more#ripemd128-rsa-MGF1 2.3.10 ripemd160 2001/04/xmlenc#ripemd160 [XMLENC11] ripemd160-rsa-MGF1 2007/05/xmldsig-more#ripemd160-rsa-MGF1 2.3.10 rsa-1_5 2001/04/xmlenc#rsa-1_5 [XMLENC11] rsa-md5 2001/04/xmldsig-more#rsa-md5 2.3.1 rsa-oaep 2009/xmlenc11#rsa-oaep [XMLENC11] rsa-oaep-mgf1p 2001/04/xmlenc#rsa-oaep-mgf1p [XMLENC11] rsa-pss 2007/05/xmldsig-more#rsa-pss 2.3.9 rsa-ripemd160 2001/04/xmldsig-more#rsa-ripemd160 2.3.5 rsa-sha1 2000/09/xmldsig#rsa-sha1 [RFC3275] rsa-sha224 2007/05/xmldsig-more#rsa-sha224 2.3.11 rsa-sha256 2001/04/xmldsig-more#rsa-sha256 2.3.2 rsa-sha384 2001/04/xmldsig-more#rsa-sha384 2.3.3 rsa-sha512 2001/04/xmldsig-more#rsa-sha512 2.3.4 rsa-whirlpool 2007/05/xmldsig-more#rsa-whirlpool 2.3.5 rsaes-kem 2010/xmlsec-ghc#rsaes-kem [GENERIC] RSAKeyValue 2000/09/xmldsig#RSAKeyValue [XMLDSIG11] seed128-cbc 2007/05/xmldsig-more#seed128-cbc 2.6.5 sha1 2000/09/xmldsig#sha1 [RFC3275] sha1-rsa-MGF1 2007/05/xmldsig-more#sha1-rsa-MGF1 2.3.10 sha224 2001/04/xmldsig-more#sha224 2.1.2 sha224-rsa-MGF1 2007/05/xmldsig-more#sha224-rsa-MGF1 2.3.10 sha256 2001/04/xmlenc#sha256 [XMLENC11] sha256-rsa-MGF1 2007/05/xmldsig-more#sha256-rsa-MGF1 2.3.10 sha3-224 2007/05/xmldsig-more#sha3-224 2.1.5 sha3-224-rsa-MGF1 2007/05/xmldsig-more#sha3-224-rsa-MGF1 2.3.10 sha3-256 2007/05/xmldsig-more#sha3-256 2.1.5 sha3-256-rsa-MGF1 2007/05/xmldsig-more#sha3-256-rsa-MGF1 2.3.10 sha3-384 2007/05/xmldsig-more#sha3-384 2.1.5 sha3-384-rsa-MGF1 2007/05/xmldsig-more#sha3-384-rsa-MGF1 2.3.10 sha3-512 2007/05/xmldsig-more#sha3-512 2.1.5 sha3-512-rsa-MGF1 2007/05/xmldsig-more#sha3-512-rsa-MGF1 2.3.10 sha384 2001/04/xmldsig-more#sha384 2.1.3 sha384-rsa-MGF1 2007/05/xmldsig-more#sha384-rsa-MGF1 2.3.10 sha512 2001/04/xmlenc#sha512 [XMLENC11] sha512-rsa-MGF1 2007/05/xmldsig-more#sha512-rsa-MGF1 2.3.10 SPKIData 2000/09/xmldsig#SPKIData [XMLDSIG11] Eastlake Standards Track [Page 23] RFC 6931 Additional XML Security URIs April 2013 tripledes-cbc 2001/04/xmlenc#tripledes-cbc [XMLENC11] whirlpool 2007/05/xmldsig-more#whirlpool 2.1.4 whirlpool-rsa-MGF1 2007/05/xmldsig-more#whirlpool-rsa-MGF1 2.3.10 WithComments 2006/12/xmlc14n11#WithComments [CANON11] WithComments TR/2001/06/xml-exc-c14n#WithComments [XCANON] WithComments TR/2001/REC-xml-c14n-20010315#WithComments [CANON10] X509Data 2000/09/xmldsig#X509Data [XMLDSIG11] xptr 2001/04/xmldsig-more#xptr 2.5.1 The initial "http://www.w3.org/" part of the URI is not included above. 4.2. URI Index The initial "http://www.w3.org/" part of the URI is not included below. URI Sec/Doc Type ---- -------- ----- 2000/09/xmldsig#base64 [RFC3275] Transform 2000/09/xmldsig#DSAKeyValue [RFC3275] Retrieval type 2000/09/xmldsig#dsa-sha1 [RFC3275] SignatureMethod 2000/09/xmldsig#enveloped-signature [RFC3275] Transform 2000/09/xmldsig#hmac-sha1 [RFC3275] SignatureMethod 2000/09/xmldsig#MgmtData [RFC3275] Retrieval type 2000/09/xmldsig#minimal 2.4 Canonicalization 2000/09/xmldsig#PGPData [RFC3275] Retrieval type 2000/09/xmldsig#rawX509Certificate [RFC3275] Retrieval type 2000/09/xmldsig#rsa-sha1 [RFC3275] SignatureMethod 2000/09/xmldsig#RSAKeyValue [RFC3275] Retrieval type 2000/09/xmldsig#sha1 [RFC3275] DigestAlgorithm 2000/09/xmldsig#SPKIData [RFC3275] Retrieval type 2000/09/xmldsig#X509Data [RFC3275] Retrieval type 2001/04/xmldsig-more#arcfour 2.6.1 EncryptionMethod 2001/04/xmldsig-more#camellia128-cbc 2.6.2 EncryptionMethod 2001/04/xmldsig-more#camellia192-cbc 2.6.2 EncryptionMethod 2001/04/xmldsig-more#camellia256-cbc 2.6.2 EncryptionMethod 2001/04/xmldsig-more#ecdsa-sha1 2.3.6 SignatureMethod 2001/04/xmldsig-more#ecdsa-sha224 2.3.6 SignatureMethod 2001/04/xmldsig-more#ecdsa-sha256 2.3.6 SignatureMethod 2001/04/xmldsig-more#ecdsa-sha384 2.3.6 SignatureMethod 2001/04/xmldsig-more#ecdsa-sha512 2.3.6 SignatureMethod 2001/04/xmldsig-more#esign-sha1 2.3.7 SignatureMethod Eastlake Standards Track [Page 24] RFC 6931 Additional XML Security URIs April 2013 2001/04/xmldsig-more#esign-sha224 2.3.7 SignatureMethod 2001/04/xmldsig-more#esign-sha256 2.3.7 SignatureMethod 2001/04/xmldsig-more#esign-sha384 2.3.7 SignatureMethod 2001/04/xmldsig-more#esign-sha512 2.3.7 SignatureMethod 2001/04/xmldsig-more#hmac-md5 2.2.1 SignatureMethod 2001/04/xmldsig-more#hmac-ripemd160 2.2.3 SignatureMethod 2001/04/xmldsig-more#hmac-sha224 2.2.2 SignatureMethod 2001/04/xmldsig-more#hmac-sha256 2.2.2 SignatureMethod 2001/04/xmldsig-more#hmac-sha384 2.2.2 SignatureMethod 2001/04/xmldsig-more#hmac-sha512 2.2.2 SignatureMethod 2001/04/xmldsig-more#KeyName 3.2 Retrieval type 2001/04/xmldsig-more#KeyValue 3.2 Retrieval type 2001/04/xmldsig-more#kw-camellia128 2.6.3 EncryptionMethod 2001/04/xmldsig-more#kw-camellia192 2.6.3 EncryptionMethod 2001/04/xmldsig-more#kw-camellia256 2.6.3 EncryptionMethod 2001/04/xmldsig-more#md5 2.1.1 DigestAlgorithm 2001/04/xmldsig-more#PKCS7signedData 3.2 Retrieval type 2001/04/xmldsig-more#psec-kem 2.6.4 EncryptionMethod 2001/04/xmldsig-more#rawPGPKeyPacket 3.2 Retrieval type 2001/04/xmldsig-more#rawPKCS7signedData 3.2 Retrieval type 2001/04/xmldsig-more#rawSPKISexp 3.2 Retrieval type 2001/04/xmldsig-more#rawX509CRL 3.2 Retrieval type 2001/04/xmldsig-more#RetrievalMethod 3.2 Retrieval type 2001/04/xmldsig-more#rsa-md5 2.3.1 SignatureMethod 2001/04/xmldsig-more#rsa-sha256 2.3.2 SignatureMethod 2001/04/xmldsig-more#rsa-sha384 2.3.3 SignatureMethod 2001/04/xmldsig-more#rsa-sha512 2.3.4 SignatureMethod 2001/04/xmldsig-more#rsa-ripemd160 2.3.5 SignatureMethod 2001/04/xmldsig-more#sha224 2.1.2 DigestAlgorithm 2001/04/xmldsig-more#sha384 2.1.3 DigestAlgorithm 2001/04/xmldsig-more#xptr 2.5.1 Transform 2001/04/xmldsig-more#PKCS7signedData 3.1 KeyInfo child 2001/04/xmlenc#aes128-cbc [XMLENC11] EncryptionMethod 2001/04/xmlenc#aes192-cbc [XMLENC11] EncryptionMethod 2001/04/xmlenc#aes256-cbc [XMLENC11] EncryptionMethod 2001/04/xmlenc#dh [XMLENC11] AgreementMethod 2001/04/xmlenc#kw-aes128 [XMLENC11] EncryptionMethod 2001/04/xmlenc#kw-aes192 [XMLENC11] EncryptionMethod 2001/04/xmlenc#kw-aes256 [XMLENC11] EncryptionMethod 2001/04/xmlenc#ripemd160 [XMLENC11] DigestAlgorithm 2001/04/xmlenc#rsa-1_5 [XMLENC11] EncryptionMethod 2001/04/xmlenc#rsa-oaep-mgf1p [XMLENC11] EncryptionMethod 2001/04/xmlenc#sha256 [XMLENC11] DigestAlgorithm 2001/04/xmlenc#sha512 [XMLENC11] DigestAlgorithm 2001/04/xmlenc#tripledes-cbc [XMLENC11] EncryptionMethod 2002/06/xmldsig-filter2 [XPATH] Transform Eastlake Standards Track [Page 25] RFC 6931 Additional XML Security URIs April 2013 2002/07/decrypt#XML [DECRYPT] Transform 2002/07/decrypt#Binary [DECRYPT] Transform 2006/12/xmlc12n11# [CANON11] Canonicalization 2006/12/xmlc14n11#WithComments [CANON11] Canonicalization 2007/05/xmldsig-more#ecdsa-ripemd160 2.3.6 SignatureMethod 2007/05/xmldsig-more#ecdsa-whirlpool 2.3.5 SignatureMethod 2007/05/xmldsig-more#kw-seed128 2.6.6 EncryptionMethod 2007/05/xmldsig-more#md2-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#md5-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#MGF1 2.3.9 SignatureMethod 2007/05/xmldsig-more#ripemd128-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#ripemd160-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#rsa-pss 2.3.9 SignatureMethod 2007/05/xmldsig-more#rsa-sha224 2.3.11 SignatureMethod 2007/05/xmldsig-more#rsa-whirlpool 2.3.5 SignatureMethod 2007/05/xmldsig-more#seed128-cbc 2.6.5 EncryptionMethod 2007/05/xmldsig-more#sha1-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#sha224-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#sha256-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#sha3-224 2.1.5 DigestAlgorithm 2007/05/xmldsig-more#sha3-224-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#sha3-256 2.1.5 DigestAlgorithm 2007/05/xmldsig-more#sha3-256-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#sha3-384 2.1.5 DigestAlgorithm 2007/05/xmldsig-more#sha3-384-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#sha3-512 2.1.5 DigestAlgorithm 2007/05/xmldsig-more#sha3-512-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#sha384-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#sha512-rsa-MGF1 2.3.10 SignatureMethod 2007/05/xmldsig-more#whirlpool 2.1.4 DigestAlgorithm 2007/05/xmldsig-more#whirlpool-rsa-MGF1 2.3.10 SignatureMethod 2009/xmlenc11#kw-aes-128-pad [XMLENC11] EncryptionMethod 2009/xmlenc11#kw-aes-192-pad [XMLENC11] EncryptionMethod 2009/xmlenc11#kw-aes-256-pad [XMLENC11] EncryptionMethod 2009/xmldsig11#dsa-sha256 [XMLDSIG11] SignatureMethod 2009/xmldsig11#ECKeyValue [XMLDSIG11] Retrieval type 2009/xmldsig11#DEREncodedKeyValue [XMLDSIG11] Retrieval type 2009/xmlenc11#aes128-gcm [XMLENC11] EncryptionMethod 2009/xmlenc11#aes192-gcm [XMLENC11] EncryptionMethod 2009/xmlenc11#aes256-gcm [XMLENC11] EncryptionMethod 2009/xmlenc11#ConcatKDF [XMLENC11] EncryptionMethod 2009/xmlenc11#mgf1sha1 [XMLENC11] SignatureMethod 2009/xmlenc11#mgf1sha224 [XMLENC11] SignatureMethod 2009/xmlenc11#mgf1sha256 [XMLENC11] SignatureMethod Eastlake Standards Track [Page 26] RFC 6931 Additional XML Security URIs April 2013 2009/xmlenc11#mgf1sha384 [XMLENC11] SignatureMethod 2009/xmlenc11#mgf1sha512 [XMLENC11] SignatureMethod 2009/xmlenc11#pbkdf2 [XMLENC11] EncryptionMethod 2009/xmlenc11#rsa-oaep [XMLENC11] EncryptionMethod 2009/xmlenc11#ECDH-ES [XMLENC11] EncryptionMethod 2009/xmlenc11#dh-es [XMLENC11] EncryptionMethod 2010/xmlsec-ghc#generic-hybrid [GENERIC] Generic Hybrid 2010/xmlsec-ghc#rsaes-kem [GENERIC] Generic Hybrid 2010/xmlsec-ghc#ecies-kem [GENERIC] Generic Hybrid TR/1999/REC-xpath-19991116 [XPATH] Transform TR/1999/REC-xslt-19991116 [XSLT] Transform TR/2001/06/xml-exc-c14n# [XCANON] Canonicalization TR/2001/06/xml-exc-c14n#WithComments [XCANON] Canonicalization TR/2001/REC-xml-c14n-20010315 [CANON10] Canonicalization TR/2001/REC-xml-c14n-20010315#WithComments [CANON10] Canonicalization TR/2001/REC-xmlschema-1-20010502 [Schema] Transform The initial "http://www.w3.org/" part of the URI is not included above. 5. Allocation Considerations W3C and IANA allocation considerations are given below. 5.1. W3C Allocation Considerations As it is easy for people to construct their own unique URIs [RFC3986] and, if appropriate, to obtain a URI from the W3C, it is not intended that any additional "http://www.w3.org/2007/05/xmldsig-more#" URIs be created beyond those enumerated in this RFC. (W3C Namespace stability rules prohibit the creation of new URIs under "http://www.w3.org/2000/09/xmldsig#" and URIs under "http://www.w3.org/2001/04/xmldsig-more#" were frozen with the publication of [RFC4051].) An "xmldsig-more" URI does not imply any official W3C or IETF status for these algorithms or identifiers nor does it imply that they are only useful in digital signatures. Currently, dereferencing such URIs may or may not produce a temporary placeholder document. Permission to use these URI prefixes has been given by the W3C. Eastlake Standards Track [Page 27] RFC 6931 Additional XML Security URIs April 2013 5.2. IANA Considerations IANA has established a registry entitled "XML Security URIs". The initial contents correspond to Section 4.2 of this document with each section number in the "Sec/Doc" column augmented with a reference to this RFC (for example, "2.6.4" means "[RFC6931], Section 2.6.4"). New entries, including new Types, will be added based on Expert Review [RFC5226]. Criterion for inclusion are (1) documentation sufficient for interoperability of the algorithm or data type and the XML syntax for its representation and use and (2) sufficient importance as normally indicated by inclusion in (2a) an approved W3C Note, Proposed Recommendation, or Recommendation or (2b) an approved IETF Standards Track document. Typically, the registry will reference a W3C or IETF document specifying such XML syntax; that document will either contain a more abstract description of the algorithm or data type or reference another document with a more abstract description. 6. Security Considerations This RFC is concerned with documenting the URIs that designate algorithms and some data types used in connection with XML security. The security considerations vary widely with the particular algorithms, and the general security considerations for XML security are outside of the scope of this document but appear in [XMLDSIG11], [XMLENC11], [CANON10], [CANON11], and [GENERIC]. [RFC6151] should be consulted before considering the use of MD5 as a DigestMethod or RSA-MD5 as a SignatureMethod. See [RFC6194] for SHA-1 security considerations and [RFC6151] for MD5 security considerations. Additional security considerations are given in connection with the description of some algorithms in the body of this document. Implementers should be aware that cryptographic algorithms become weaker with time. As new cryptoanalysis techniques are developed and computing performance improves, the work factor to break a particular cryptographic algorithm will reduce. Therefore, cryptographic implementations should be modular, allowing new algorithms to be readily inserted. That is, implementers should be prepared for the set of mandatory-to-implement algorithms to change over time. Eastlake Standards Track [Page 28] RFC 6931 Additional XML Security URIs April 2013 7. Acknowledgements The contributions to this document by the following people, listed in alphabetic order, are gratefully acknowledged: Benoit Claise, Adrian Farrel, Stephen Farrell, Ernst Giessmann, Frederick Hirsch, Bjoern Hoehrmann, Russ Housley, Satoru Kanno, Charlie Kaufman, Konrad Lanz, HwanJin Lee, Barry Leiba, Peter Lipp, Subramanian Moonesamy, Thomas Roessler, Hanseong Ryu, Peter Saint-Andre, and Sean Turner. The following contributors to [RFC4051], on which this document is based, are gratefully acknowledged: Glenn Adams, Merlin Hughs, Gregor Karlinger, Brian LaMachia, Shiho Moriai, Joseph Reagle, Russ Housley, and Joel Halpern. Eastlake Standards Track [Page 29] RFC 6931 Additional XML Security URIs April 2013 Appendix A. Changes from RFC 4051 The following changes have been made in RFC 4051 to produce this document. 1. Updated and added numerous RFC, W3C, and Internet-Draft references. 2. Added #ecdsa-ripemd160, #whirlpool, #ecdsa-whirlpool, #rsa-whirlpool, #seed128-cbc, and #kw-seed128. 3. Incorporated RFC 4051 errata [Errata191]. 4. Added URI and fragment index sections. 5. For MD5 and SHA-1, added references to [RFC6151] and [RFC6194]. 5. Added SHA-3 / Keccak placeholder section including #sha3-224, #sha3-256, #sha3-384, and #sha3-512. 6. Added RSASSA-PSS sections including #sha3-224-MGF1, #sha3-256-MGF1, #sha3-384-MGF1, #sha3-512-MGF1, #md2-rsa-MGF1, #md5-rsa-MGF1, #sha1-rsa-MGF1, #sha224-rsa-MGF1, #sha256-rsa-MGF1, #sha384-rsa-MGF1, #sha512-rsa-MGF1, #ripemd128-rsa-MGF1, #ripemd160-rsa-MGF1, and #whirlpool-rsa-MGF1. 7. Added new URIs from Canonical XML 1.1 and XML Encryption 1.1 including: #aes128-gcm, #aes192-gcm, #aes256-gc, #ConcatKDF, #pbkdf, #rsa-oaep, #ECDH-ES, and #dh-es. 8. Added acronym subsection. 9. Added numerous URIs that are specified in W3C XML Security documents to the Indexes. These do not have sections in the body of this document -- for example, those for dsa-sha256, mgf1sha*, decrypt#XML, and xmldsig-filter2. 10. Requested establishment of an IANA registry. 11. Made various editorial changes. Eastlake Standards Track [Page 30] RFC 6931 Additional XML Security URIs April 2013 Normative References [10118-3] ISO, "Information technology -- Security techniques -- Hash-functions -- Part 3: Dedicated hash-functions", ISO/IEC 10118-3:2004, 2004. [18033-2] ISO, "Information technology -- Security techniques -- Encryption algorithms -- Part 3: Asymmetric ciphers", ISO/IEC 18033-2:2010, 2010. [Camellia] Aoki, K., Ichikawa, T., Matsui, M., Moriai, S., Nakajima, J., and T. Tokita, "Camellia: A 128-bit Block Cipher Suitable for Multiple Platforms - Design and Analysis", in Selected Areas in Cryptography, 7th Annual International Workshop, SAC 2000, August 2000, Proceedings, Lecture Notes in Computer Science 2012, pp. 39-56, Springer-Verlag, 2001. [FIPS180-4] US National Institute of Science and Technology, "Secure Hash Standard (SHS)", FIPS 180-4, March 2012, <http://csrc.nist.gov/publications/fips/fips180-4/ fips-180-4.pdf>. [FIPS186-3] US National Institute of Science and Technology, "Digital Signature Standard (DSS)", FIPS 186-3, June 2009, <http://csrc.nist.gov/publications/fips/ fips186-3/fips_186-3.pdf>. [IEEEP1363a] IEEE, "Standard Specifications for Public Key Cryptography- Amendment 1: Additional Techniques", IEEE 1363a-2004, 2004. [RC4] Schneier, B., "Applied Cryptography: Protocols, Algorithms, and Source Code in C", Second Edition, John Wiley and Sons, New York, NY, 1996. [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992. [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies", RFC 2045, November 1996. [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing for Message Authentication", RFC 2104, February 1997. Eastlake Standards Track [Page 31] RFC 6931 Additional XML Security URIs April 2013 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax Version 1.5", RFC 2315, March 1998. [RFC3275] Eastlake 3rd, D., Reagle, J., and D. Solo, "(Extensible Markup Language) XML-Signature Syntax and Processing", RFC 3275, March 2002. [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard (AES) Key Wrap Algorithm", RFC 3394, September 2002. [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1", RFC 3447, February 2003. [RFC3713] Matsui, M., Nakajima, J., and S. Moriai, "A Description of the Camellia Encryption Algorithm", RFC 3713, April 2004. [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, January 2005. [RFC4050] Blake-Wilson, S., Karlinger, G., Kobayashi, T., and Y. Wang, "Using the Elliptic Curve Signature Algorithm (ECDSA) for XML Digital Signatures", RFC 4050, April 2005. [RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 4055, June 2005. [RFC4269] Lee, H., Lee, S., Yoon, J., Cheon, D., and J. Lee, "The SEED Encryption Algorithm", RFC 4269, December 2005. [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008. [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011. Eastlake Standards Track [Page 32] RFC 6931 Additional XML Security URIs April 2013 [X9.62] American National Standards Institute, Accredited Standards Committee X9, "Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI X9.62:2005, 2005. [XMLENC10] Reagle, J. and D. Eastlake, "XML Encryption Syntax and Processing", W3C Recommendation, 10 December 2002, <http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/>. [XMLENC11] Eastlake, D., Reagle, J., Hirsch, F., and T. Roessler, "XML Encryption Syntax and Processing Version 1.1", W3C Proposed Recommendation, 24 January 2013, <http://www.w3.org/TR/2013/PR-xmlenc-core1-20130124/>. [XPointer] Grosso, P., Maler, E., Marsh, J., and N. Walsh, "XPointer Framework", W3C Recommendation, 25 March 2003, <http://www.w3.org/TR/2003/ REC-xptr-framework-20030325/>. Informative References [CANON10] Boyer, J., "Canonical XML Version 1.0", W3C Recommendation, 15 March 2001, <http://www.w3.org/TR/2001/REC-xml-c14n-20010315>. [CANON11] Boyer, J., and G. Marcy, "Canonical XML Version 1.1", W3C Recommendation, 2 May 2008, <http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/>. [DECRYPT] Hughes, M., Imamura, T., and H. Maruyama, "Decryption Transform for XML Signature", W3C Recommendation, 10 December 2002, <http://www.w3.org/TR/2002/ REC-xmlenc-decrypt-20021210>. [Errata191] RFC Errata, Errata ID 191, RFC 4051, <http://www.rfc-editor.org>. [GENERIC] Nystrom, M. and F. Hirsch, "XML Security Generic Hybrid Ciphers", W3C Working Group Note, 24 January 2013, <http://www.w3.org/TR/2013/ NOTE-xmlsec-generic-hybrid-20130124/>. [Keccak] Bertoni, G., Daeman, J., Peeters, M., and G. Van Assche, "The KECCAK sponge function family", January 2013, <http://keccak.noekeon.org>. Eastlake Standards Track [Page 33] RFC 6931 Additional XML Security URIs April 2013 [RFC3075] Eastlake 3rd, D., Reagle, J., and D. Solo, "XML- Signature Syntax and Processing", RFC 3075, March 2001. [RFC3076] Boyer, J., "Canonical XML Version 1.0", RFC 3076, March 2001. [RFC3092] Eastlake 3rd, D., Manros, C., and E. Raymond, "Etymology of "Foo"", RFC 3092, 1 April 2001. [RFC3741] Boyer, J., Eastlake 3rd, D., and J. Reagle, "Exclusive XML Canonicalization, Version 1.0", RFC 3741, March 2004. [RFC4010] Park, J., Lee, S., Kim, J., and J. Lee, "Use of the SEED Encryption Algorithm in Cryptographic Message Syntax (CMS)", RFC 4010, February 2005. [RFC4051] Eastlake 3rd, D., "Additional XML Security Uniform Resource Identifiers (URIs)", RFC 4051, April 2005. [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic Curve Cryptography Algorithms", RFC 6090, February 2011. [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations for the MD5 Message-Digest and the HMAC- MD5 Algorithms", RFC 6151, March 2011. [RFC6194] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms", RFC 6194, March 2011. [Schema] Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn, "XML Schema Part 1: Structures Second Edition", W3C Recommendation, 28 October 2004, <http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/>. Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes Second Edition", W3C Recommendation, 28 October 2004, <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/>. [SHA-3] US National Institute of Science and Technology, "SHA-3 WINNER", February 2013, <http://csrc.nist.gov/ groups/ST/hash/sha-3/winner_sha-3.html>. [W3C] World Wide Web Consortium, <http://www.w3.org>. Eastlake Standards Track [Page 34] RFC 6931 Additional XML Security URIs April 2013 [XCANON] Boyer, J., Eastlake, D., and J. Reagle, "Exclusive XML Canonicalization Version 1.0", W3C Recommendation, 18 July 2002, <http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/>. [XMLDSIG10] Eastlake, D., Reagle, J., Solo, D., Hirsch, F., and T. Roessler, "XML Signature Syntax and Processing (Second Edition)", W3C Recommendation, 10 June 2008, <http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/>. [XMLDSIG11] Eastlake, D., Reagle, J., Solo, D., Hirsch, F., Nystrom, M., Roessler, T., and K. Yiu, "XML Signature Syntax and Processing Version 1.1", W3C Proposed Recommendation, 24 January 2013, <http://www.w3.org/TR/2013/PR-xmldsig-core1-20130124/>. [XMLDSIG-PROP] Hirsch, F., "XML Signature Properties", W3C Proposed Recommendation, 24 January 2013, <http://www.w3.org/TR/ 2013/PR-xmldsig-properties-20130124/>. [XMLSECXREF] Hirsch, F., Roessler, T., and K. Yiu, "XML Security Algorithm Cross-Reference", W3C Working Group Note, 24 January 2013, <http://www.w3.org/TR/2013/ NOTE-xmlsec-algorithms-20130124/>. [XPATH] Boyer, J., Hughes, M., and J. Reagle, "XML-Signature XPath Filter 2.0", W3C Recommendation, 8 November 2002, <http://www.w3.org/TR/2002/ REC-xmldsig-filter2-20021108/>. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M., Kay, M., Robie, J., and J. Simeon, "XML Path Language (XPath) 2.0 (Second Edition)", W3C Recommendation, 14 December 2010, <http://www.w3.org/TR/2010/REC-xpath20-20101214/>. [XSLT] Saxonica, M., "XSL Transformations (XSLT) Version 2.0", W3C Recommendation, 23 January 2007, <http://www.w3.org/TR/2007/REC-xslt20-20070123/>. Eastlake Standards Track [Page 35] RFC 6931 Additional XML Security URIs April 2013 Author's Address Donald E. Eastlake, 3rd Huawei Technologies 155 Beaver Street Milford, MA 01757 USA Phone: +1-508-333-2270 EMail: d3e3e3@gmail.com Eastlake Standards Track [Page 36]