πŸ’Ύ Archived View for gmi.noulin.net β€Ί man β€Ί man3 β€Ί logf.3.gmi captured on 2024-06-16 at 13:47:14. Gemini links have been rewritten to link to archived content

View Raw

More Information

⬅️ Previous capture (2023-09-08)

-=-=-=-=-=-=-

LOG(3)                                                                  Linux Programmer's Manual                                                                 LOG(3)

NAME
       log, logf, logl - natural logarithmic function

SYNOPSIS
       #include <math.h>

       double log(double x);
       float logf(float x);
       long double logl(long double x);

       Link with -lm.

   Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

       logf(), logl():
           _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
               || /* Since glibc 2.19: */ _DEFAULT_SOURCE
               || /* Glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
       These functions return the natural logarithm of x.

RETURN VALUE
       On success, these functions return the natural logarithm of x.

       If x is a NaN, a NaN is returned.

       If x is 1, the result is +0.

       If x is positive infinity, positive infinity is returned.

       If x is zero, then a pole error occurs, and the functions return -HUGE_VAL, -HUGE_VALF, or -HUGE_VALL, respectively.

       If x is negative (including negative infinity), then a domain error occurs, and a NaN (not a number) is returned.

ERRORS
       See math_error(7) for information on how to determine whether an error has occurred when calling these functions.

       The following errors can occur:

       Domain error: x is negative
              errno is set to EDOM.  An invalid floating-point exception (FE_INVALID) is raised.

       Pole error: x is zero
              errno is set to ERANGE.  A divide-by-zero floating-point exception (FE_DIVBYZERO) is raised.

ATTRIBUTES
       For an explanation of the terms used in this section, see attributes(7).

       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β”‚Interface                                                                                                                             β”‚ Attribute     β”‚ Value   β”‚
       β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
       β”‚log(), logf(), logl()                                                                                                                 β”‚ Thread safety β”‚ MT-Safe β”‚
       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

CONFORMING TO
       C99, POSIX.1-2001, POSIX.1-2008.

       The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS
       In glibc 2.5 and earlier, taking the log() of a NaN produces a bogus invalid floating-point (FE_INVALID) exception.

SEE ALSO
       cbrt(3), clog(3), log10(3), log1p(3), log2(3), sqrt(3)

                                                                               2021-03-22                                                                         LOG(3)