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OQtuL {rLtenda,

APL PrLeAr ia a nen buAinus +ortned AorL the Dwabotz ot
publi^thing booh^t, panpMe.ta, anL otitcrt nal&j.a.(. teta.ten tu i?L.

ThiA nen'Le.ttel it the d,itut o( a unlu 06 occa.Aiona!
pubUtaLiont tt bz devoted. to annoucinetnl dnd. nivi-eru ol
boohA, in|ohnation dbou.t nee.t I.ga, biiel atLi.cle), ptLobl.e;na
ond totaLiana, dz(ini.ti.ond od {uncbLou, conzupo:nience, ole.

we- ubu.Ld. be plealzd to ftzceive na.rxu.6c,LLbta orl ouLl-irea
oi Wi.gcfen booh.t, nd-te,tiaL lotl thQ- neu,Leltei, connentt atd,
6u4gULLoM.

I{ qou wi8h to cnnti)tlLe. to ,Leceive thL nen,LettQi pLQ-a e
AQrLd uA qouJl nane dnd. dldnut. tlz uti,LL o"l,to be gltl to nia.i]. a
copq od t-hi.d iAlue to anqone qou wi"tlt to auggut..

Sincene.t-q,

fr"'* J"'*.*

APL WORKSHOP
An APL workshop r,raa hel-d May 16-18 at Queenrs University.
Kingston, Ontario, under the sponsorship of the Departnent
of Computing and fnformation Science and the SIGPLAN Tech-
nical Conmittee on APL (STAPL). The 35 invited participants
included representatives from some of the manufacturers who
support APL (IB!,1, Burroughs, Digital Equipment Corporation),
several time-sharing services and tt\e academi.c community.
The major topics discussetl were the development of an ApL
standaral, a standard information format for workspace i[ter-
change, and the need for language extensions in the areas ofgeneral arrays, control structures, and error handling and
event controf. A fuller report of the workahop activities
and a list of addresses of the participants wilL be submitted
to APL Quote Quad, or is available on request from the rrork-
shop organizer, M.A. Jenkins, Conputing antl Information
Science, Queenrs University, Kingston, Canada. K7L 3N6.



Inaorc $onnno9. ,frau/dan

CUBES ,,4rn6eaat Gfilngn

(r) t(oc)=N, ,N

The st'nbol t will be used to assert that the A?1,
expressibn imed.iately following it is a well-defined
Iogical array with no zero entry r so that tE,fPf is
equivalent to t^/,ENPR. We shall use zero origin
throughout.

we shall be concernedl with arrays d satisfying the
following three non-indepenalent conditl.ons :

tC€ rlVt 3 t( rlV*3 )<e

so that d is an affangement of the elements of 1ly*3 in the
form of a cube .

Our deflnition of a magic cube is far more stringent
than that usually given. For us a rnagic cube of oraler tV is
an array C satisfying (I) and such that, in each of the
thirteen possible directions, every set of 1y elements of C
forning a straight line in the cube c has the s€une sum. In
the usual definition. even when the cube is deacribeal as
"pand.iagonal", o41y seven directions are considered. namely
the three orthogonal directions and the four alirections of
the space diagonals. Occasionally our magic cube has been
trlterreal to as a perfect rnagic cube.
U

A pa[tliagonal cube is an array c such that for any
choice of i i-egets XtIZ the arlay x0t0ll0t1lz0t2lC is a
magic cube.

An associated cube is a rnagic cube C for r hich
(2) t^/(-7+x/pc)=(,c)+O,c

The theory below provides a general method for the
construction of magic cubes, including the following four
examples :

(3) (3e7)p7L7l(e g+s spq s 6)+.x(3p?)117*3
(4) (3ps)p8ro 1-2s7 6 5 4[8](s s+e spz 3 4 ) + . x ( 3 p 8 ) r r 8 * 3 ](5) (3p9)p9rl 2 o 3 4s I6 7[el(e e+e spz 3 5 ) + . x ( 3 p 9 ) r r s * 3 ]
(6) (3p11 )p111111(3 313 5p3 4 5)+.x(3p11)rr11*3

of these examples, (3) is assocl-ated. (4) is
pandiagonal, and each of (5), (6) is an associateal
pandj.agonal perfect magic cube.

r-



aTHE THEORY

ft is convenient to encoale the efements of C antt of
1iV*3 by using the matrices Mf a\d MC defined below:

(7\ ntr + (3p )rr,['*s EMC=(3p,V)r,C

Observe that(8) t( 11r*3 )=lt'.rtvr tc--(3p ') pN lr,rc

and that
(9) tMI<1N tMCelv t((pMC)=pur)t (pur)=3,Nt g

Taking ff ,aa 3=oX). to be a suitably chosen matrix,
subjeet to the constraints below. we define C by using (8)
and (7) in conjunction with
(I0) Mc + N lK+.xMI

so that the array C is in fact defined by

(11)

modulo

(L2',t

{- ( 3plV )p/trfl l?lr. x ( SoIy)rrlvr.3

Then C wlll satisfy (1) if and only if 1( is invertible
IV, which is equivatent to the condition

where DE? is the
divisor function.

El=N GCD DEI K

determinant and cCD is the greatest corunon

cube

(13) t^ /,a=N GCt l(n. x1-(3p3)rr13

O 2 6 8 correapond to the four spacewherein columns
diagonals .

The cond.ition (2) for C to be an associated cube (if
magic) will be satisfieal if and only if
(14) t'^/7=Nl+/K

The array e satisfying (1) will
if f satisfies the condition

be a pandiargonal ma\,

independently on the
convenient to take ](sets

to be

(rs)

Since (13), (14) depentl only and
of numbers in each row of .K, it is
a circulant matrix:

(which nay also
suitably chosen

N 1- 0 2 103 3pt/

be written ff<-3 3+3 spl/) \rhere I/ (t3=py) is a
vector.



lf t^/0'2 3 sllv and if we define

we find t1=nl+/V and t1=lylsx1rF so that -tr has the mod It
inverse (3 3+3 5po 2 7x!+R) anal consequently ]l satisfies
(12) and (14) and c satisfies (1) and (2).

Since, except for coLunns 2 6 8, (13) is easity
verified, it fotlows that in this case (t0*2 3 slll/) (15)
yields an associated magic cube, \,rhich is pantliagonal if
also t0t7 liy. By taking iV<-7 or.v.-11 in (11) and (16) we
obtain the examples (3) and (6).

If w/o=2 3 s T ll'/ it is tunpossible to satlsfy (13) .
but I'e may obtain examples such as (4) and (5) by
incorporating the step MC<-W\MC\ where tr is a rearrangement
of rlv such that, for any integers A anA Dl

(17) to iIt l, irnpf ies L(+/v)=+/WtN I A+Dx 1N 1

and, in the case t0=311V, by rnodifying 7.

we close with seven problems, of which the last two
are by far the most challenging.

CHALLENGES TO THE READER

A. construct a magic cube of order 25.
B. prove that +.2o4\=+/,(x6u) /lo)(vbu) /111(ziu) /121c,

where c is given by (4) and xtytz'J are integers such that
t2=r/u+(i.a)€o,J. Interpret this result, and fintl other
Eirnilar results.

. c. construct a four-dimensional analogue of a magic cube.
$'b".*" that the linear sums are the same in no fewer than

forty different directions,
D. Construct a strongly associaled magic cube of oraler 8'

where a magic cube c is strongly associated if
(18) t^/ ((\x/pc)=,c) v ((rx/pc)=0,d)

E. construct a 5x5x5 cube on 1125 in which more than 100
lines of length 5 have the same sutn.

F. Determine whether or not there exists a magic cube of
order 15

G. Determine whether or not there exists a
four-dimensional magic'cube whoae order is less than 16.

aBETI?(?!86)ppdBETT

what capital city was tranaformed to Eastern capital
by -20 7

'$p'ur ta <- 3 343 5p r <- (13)r,R * (31-t/)xLrV+3

APIJ progranner Bob Hankey of DSG, 133 South 36 Street,
Philadelphia, now combines progranurdng with the perm-
anent repair of typebaLls, a business he invented when
his only APL typeball suffered a broken biscupid.



ON FUNCTION DEFINITION

SQRI : u* .5

A forn of function definition particularly suited toexposition is defined. and illustrated below in &cerpts frornIversonrs EteJngllt-ary Anetysis (ApL press, 1.976). We rroulal bepleased to publish any intelesting and efficient ApI program
gapable of fixing the definition of a function presenled toit (as a character vectort in the oar form here iescritea. --

- Consider a dyad.ic function _F defined. informally asfoll.ows: the result is the sun of the right argument andthe product of the left argument and the square of-the rightargrunent. fn other !rord.s, the result of the expression.f F y is I+X'1*2i specifically, 2 F 3 equals g+2x3r,2 or 27.

A formal definition is one which can be interpreted bya _mecha GEI- application of known rutes. r"q"l;il;- ;'"judgenent or subtle interpretation. f'or exarnple, - thefunction F defined informally above can be defined- formally
asi

F'.a+o.tut 2

usinq the following rules: to interpret any expression ofthe form .tr F y, substitute the first argune;t x for each
occurrence of c, (the first letter of the Greek alphabet) inthe expression. and tEEifEst argument y for each occurrence
of a, (the last letter of the Greek alphabet). For example,the steps ifi"-Ehe interpretation of th6 expression 4 F 3 canbe shown as follows:

4F3
3+4x3*2
39

If the sl4nbols d anal &r do not both occur in adefinition, the function defined is monad.ic. For exampl-e:

PII fME S | 3 .74!6xo)

The colon in a function definition may be read. alouda9 "is". Thus, I:a+.J rBay be read as ',F is o plus &j".

A variable which- ls asslgneal a value lrithin a firttction
definition is local to the function. .

A function definition is said to be recursive if thefunction being defined recurs in the expresSlf6i--?le-fining it.This notion nay be faniliar frorn inforrnal definitions. Forexample, the power function .tr*rv may be said. to equal .f times.f*ll'-1, and the factorial function lilr may be sjid. to equal
ryx !lY-1.



-. Let us attempt to define the factorial function -plc in' rts manner:v
EAC :uxPAC a-7

To- interpret the expressiot FAC 4 we would. proceed bysubstitution as usual:

EAC 4
4XEAC 3
4x3xFAC 2
4x3Y2'EAC 7

It is clear that this procedure can be terminatedmeaningfully only if lre know the value of EAC X for some
value of the arg,ument X. In this case, FAC 1 is equat to 1,
and with this knowlealge we can terminate the inteipretatl-on
as follows:

4x3r2x1
24

In general, it is necessary to know a gecond.
expression for the function (in thie case the simpleexpression 1) and the condition under which it is to beapplied. (in this crase when o=1). The recursive definition
of factoriat therefore requires the following three pieces
of infornation:

utF a-!

7

The primary expreasion:
A proposition 3

A secondary expression t

In a formal definition these three tlata are presented
foregoing order r,rith colons separating them. Thus:

FAC:uxEAC a-!,a=!,7

FAC 4
24

Area of a cloaed !!ggre. A fi$rre is ctosed. if the last
!6i-nt -Tn- its-matTix-- represeitation equals the first.
However, if a figure is known to be ctoseal, Lt can al-so be
represented rnore brielly by dropping the ]-ast point and
requiring that the connection of the points be cycllc. i.e.,
tbe last connects to the flrst. Flgnrre 5.19 shows the
pentagon so represented bl^ the following s-column matrix 3

P
7 70 6 3 4
25863

The area of a closed polygon so represented is given
by the foUor,ring Eingle function :

AREA t.5x+/ (xl1 10.0)-xll 00.,r t5.9.61



perimeter of a closed figure. If p is a two by ll/ matrixElEEEnEin!-th-e-Z-oordiiates of the /y vertices of a ctos r.
polygon, then the displacements from vertex to vertex r _given by the expression D-p--!6p. For example, if p is t)Gmatrix of Figure 5.19, then IV is 5, and:

P
7 70 6 3 4
25863

-1OP 
D4 7 10 6 3 3 3 -4 -3 73 2 5 8 6 -1 3 3 -2 -s

.- .- Moreover, the length of any displacement (according tothe theorem of Pythagoras) is the square root of the sum of
!h. squares of the displacements along the .tr and y axes.consequently, the lengths are given bt EeE! +lD*2, lvhere
EQEIte*.5. .The lengths of the sides of a polygon aretherefore given by the fotlowing function appiied-to thenatrix representation of its vertices:

LP tEQE! + I ( tt -- lQu) r,2 t5.9 ,7 1

The entire set of functions developeal for handling
polynomials is collected below:

Pt+/axut 7Ns,
N:+/a=u
PLUS | (ML 4 e ) + (ML<- (N a)f N tt) t t )

MII,IUS I o, PLUS -.t
ffMESt(axt+a) PLUS o,a fIMES L+a;o=ll!ntO
,UliTOi (1{&,r1+cr) .o. INI) 7+d MINAS ax1+0r+1+oi (iVo)>IVrrr: r0
LINrO tQ(6e.) INIO 6@
CU-PT:(-+/L\0=0o)1ar
PVRAr(ct P 7lu),a PVRA \+uto=N@.rO

Many of the properties of a function can be exDrer Iin terms of tbe properties of the component functioirs uE6dl
in its definition. Thus if E:(Fa)+(ca), then (as shown in
sec 2.3 and. 3.3) the ad.d.itive function for fl is given by
tH:(o.tFa)+(agGu) 1 and the d.erivative is eH:(p?;)+(Acu).Rules.for obtaining the derivatives of composite funcaions
are l-isted below, using Af and 2C to denote the d.erivatives
of 1 and C, and lE and. trd to d.enote their inverses:

NAME COMPOSITE FORM DERIVATIVE

SUM (Eu)+Gu
PRODUCT ( Eu) xGa
RECIPROCAL +Fu
COMPOSITION F C u
INVERSE IF a
POWER a* Il

4.6L If 7 is any two-element
vector, sho\d !hat:

a) 2 o +/v
-- /x /7 2..o v

(PF u)+2c r.r [ 6.1.1]
( (Eu)xPG @)+(DE @)xcu t5.L.2l
-(28 u.)+(Fu)*2 t6.1.31(2F Cu)xDC ar t5.1.41
rDF IF a t 6.1.5l
Nxt *lt-t t 6. I.6l

b) r o +/v
+/xlj L67 2o.o V


