💾 Archived View for gemini.bortzmeyer.org › rfc-mirror › rfc9457.txt captured on 2024-03-21 at 15:39:05.

View Raw

More Information

⬅️ Previous capture (2023-09-08)

-=-=-=-=-=-=-





Internet Engineering Task Force (IETF)                     M. Nottingham
Request for Comments: 9457                                              
Obsoletes: 7807                                                 E. Wilde
Category: Standards Track                                               
ISSN: 2070-1721                                                 S. Dalal
                                                               July 2023


                     Problem Details for HTTP APIs

Abstract

   This document defines a "problem detail" to carry machine-readable
   details of errors in HTTP response content to avoid the need to
   define new error response formats for HTTP APIs.

   This document obsoletes RFC 7807.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc9457.

Copyright Notice

   Copyright (c) 2023 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Revised BSD License text as described in Section 4.e of the
   Trust Legal Provisions and are provided without warranty as described
   in the Revised BSD License.

Table of Contents

   1.  Introduction
   2.  Requirements Language
   3.  The Problem Details JSON Object
     3.1.  Members of a Problem Details Object
       3.1.1.  "type"
       3.1.2.  "status"
       3.1.3.  "title"
       3.1.4.  "detail"
       3.1.5.  "instance"
     3.2.  Extension Members
   4.  Defining New Problem Types
     4.1.  Example
     4.2.  Registered Problem Types
       4.2.1.  about:blank
   5.  Security Considerations
   6.  IANA Considerations
   7.  References
     7.1.  Normative References
     7.2.  Informative References
   Appendix A.  JSON Schema for HTTP Problems
   Appendix B.  HTTP Problems and XML
   Appendix C.  Using Problem Details with Other Formats
   Appendix D.  Changes from RFC 7807
   Acknowledgements
   Authors' Addresses

1.  Introduction

   HTTP status codes (Section 15 of [HTTP]) cannot always convey enough
   information about errors to be helpful.  While humans using web
   browsers can often understand an HTML [HTML5] response content, non-
   human consumers of HTTP APIs have difficulty doing so.

   To address that shortcoming, this specification defines simple JSON
   [JSON] and XML [XML] document formats to describe the specifics of a
   problem encountered -- "problem details".

   For example, consider a response indicating that the client's account
   doesn't have enough credit.  The API's designer might decide to use
   the 403 Forbidden status code to inform generic HTTP software (such
   as client libraries, caches, and proxies) of the response's general
   semantics.  API-specific problem details (such as why the server
   refused the request and the applicable account balance) can be
   carried in the response content so that the client can act upon them
   appropriately (for example, triggering a transfer of more credit into
   the account).

   This specification identifies the specific "problem type" (e.g., "out
   of credit") with a URI [URI].  HTTP APIs can use URIs under their
   control to identify problems specific to them or can reuse existing
   ones to facilitate interoperability and leverage common semantics
   (see Section 4.2).

   Problem details can contain other information, such as a URI
   identifying the problem's specific occurrence (effectively giving an
   identifier to the concept "The time Joe didn't have enough credit
   last Thursday"), which can be useful for support or forensic
   purposes.

   The data model for problem details is a JSON [JSON] object; when
   serialized as a JSON document, it uses the "application/problem+json"
   media type.  Appendix B defines an equivalent XML format, which uses
   the "application/problem+xml" media type.

   When they are conveyed in an HTTP response, the contents of problem
   details can be negotiated using proactive negotiation; see
   Section 12.1 of [HTTP].  In particular, the language used for human-
   readable strings (such as those in title and description) can be
   negotiated using the Accept-Language request header field
   (Section 12.5.4 of [HTTP]), although that negotiation may still
   result in a non-preferred, default representation being returned.

   Problem details can be used with any HTTP status code, but they most
   naturally fit the semantics of 4xx and 5xx responses.  Note that
   problem details are (naturally) not the only way to convey the
   details of a problem in HTTP.  If the response is still a
   representation of a resource, for example, it's often preferable to
   describe the relevant details in that application's format.
   Likewise, defined HTTP status codes cover many situations with no
   need to convey extra detail.

   This specification's aim is to define common error formats for
   applications that need one so that they aren't required to define
   their own or, worse, tempted to redefine the semantics of existing
   HTTP status codes.  Even if an application chooses not to use it to
   convey errors, reviewing its design can help guide the design
   decisions faced when conveying errors in an existing format.

   See Appendix D for a list of changes from [RFC7807].

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  The Problem Details JSON Object

   The canonical model for problem details is a JSON [JSON] object.
   When serialized in a JSON document, that format is identified with
   the "application/problem+json" media type.

   For example:

   POST /purchase HTTP/1.1
   Host: store.example.com
   Content-Type: application/json
   Accept: application/json, application/problem+json

   {
     "item": 123456,
     "quantity": 2
   }

   HTTP/1.1 403 Forbidden
   Content-Type: application/problem+json
   Content-Language: en

   {
    "type": "https://example.com/probs/out-of-credit",
    "title": "You do not have enough credit.",
    "detail": "Your current balance is 30, but that costs 50.",
    "instance": "/account/12345/msgs/abc",
    "balance": 30,
    "accounts": ["/account/12345",
                 "/account/67890"]
   }

   Here, the out-of-credit problem (identified by its type) indicates
   the reason for the 403 in "title", identifies the specific problem
   occurrence with "instance", gives occurrence-specific details in
   "detail", and adds two extensions: "balance" conveys the account's
   balance, and "accounts" lists links where the account can be topped
   up.

   When designed to accommodate it, problem-specific extensions can
   convey more than one instance of the same problem type.  For example:

   POST /details HTTP/1.1
   Host: account.example.com
   Accept: application/json

   {
     "age": 42.3,
     "profile": {
       "color": "yellow"
     }
   }

   HTTP/1.1 422 Unprocessable Content
   Content-Type: application/problem+json
   Content-Language: en

   {
    "type": "https://example.net/validation-error",
    "title": "Your request is not valid.",
    "errors": [
                {
                  "detail": "must be a positive integer",
                  "pointer": "#/age"
                },
                {
                  "detail": "must be 'green', 'red' or 'blue'",
                  "pointer": "#/profile/color"
                }
             ]
   }

   The fictional problem type here defines the "errors" extension, an
   array that describes the details of each validation error.  Each
   member is an object containing "detail" to describe the issue and
   "pointer" to locate the problem within the request's content using a
   JSON Pointer [JSON-POINTER].

   When an API encounters multiple problems that do not share the same
   type, it is RECOMMENDED that the most relevant or urgent problem be
   represented in the response.  While it is possible to create generic
   "batch" problem types that convey multiple, disparate types, they do
   not map well into HTTP semantics.

   Note also that the API has responded with the "application/
   problem+json" type, even though the client did not list it in Accept,
   as is allowed by HTTP (see Section 12.5.1 of [HTTP]).

3.1.  Members of a Problem Details Object

   Problem detail objects can have the following members.  If a member's
   value type does not match the specified type, the member MUST be
   ignored -- i.e., processing will continue as if the member had not
   been present.

3.1.1.  "type"

   The "type" member is a JSON string containing a URI reference [URI]
   that identifies the problem type.  Consumers MUST use the "type" URI
   (after resolution, if necessary) as the problem type's primary
   identifier.

   When this member is not present, its value is assumed to be
   "about:blank".

   If the type URI is a locator (e.g., those with an "http" or "https"
   scheme), dereferencing it SHOULD provide human-readable documentation
   for the problem type (e.g., using HTML [HTML5]).  However, consumers
   SHOULD NOT automatically dereference the type URI, unless they do so
   when providing information to developers (e.g., when a debugging tool
   is in use).

   When "type" contains a relative URI, it is resolved relative to the
   document's base URI, as per [URI], Section 5.  However, using
   relative URIs can cause confusion, and they might not be handled
   correctly by all implementations.

   For example, if the two resources "https://api.example.org/foo/
   bar/123" and "https://api.example.org/widget/456" both respond with a
   "type" equal to the relative URI reference "example-problem", when
   resolved they will identify different resources
   ("https://api.example.org/foo/bar/example-problem" and
   "https://api.example.org/widget/example-problem", respectively).  As
   a result, it is RECOMMENDED that absolute URIs be used in "type" when
   possible and that when relative URIs are used, they include the full
   path (e.g., "/types/123").

   The type URI is allowed to be a non-resolvable URI.  For example, the
   tag URI scheme [TAG] can be used to uniquely identify problem types:

   tag:example@example.org,2021-09-17:OutOfLuck

   However, resolvable type URIs are encouraged by this specification
   because it might become desirable to resolve the URI in the future.
   For example, if an API designer used the URI above and later adopted
   a tool that resolves type URIs to discover information about the
   error, taking advantage of that capability would require switching to
   a resolvable URI, creating a new identity for the problem type and
   thus introducing a breaking change.

3.1.2.  "status"

   The "status" member is a JSON number indicating the HTTP status code
   ([HTTP], Section 15) generated by the origin server for this
   occurrence of the problem.

   The "status" member, if present, is only advisory; it conveys the
   HTTP status code used for the convenience of the consumer.
   Generators MUST use the same status code in the actual HTTP response,
   to assure that generic HTTP software that does not understand this
   format still behaves correctly.  See Section 5 for further caveats
   regarding its use.

   Consumers can use the status member to determine what the original
   status code used by the generator was when it has been changed (e.g.,
   by an intermediary or cache) and when a message's content is
   persisted without HTTP information.  Generic HTTP software will still
   use the HTTP status code.

3.1.3.  "title"

   The "title" member is a JSON string containing a short, human-
   readable summary of the problem type.

   It SHOULD NOT change from occurrence to occurrence of the problem,
   except for localization (e.g., using proactive content negotiation;
   see [HTTP], Section 12.1).

   The "title" string is advisory and is included only for users who are
   unaware of and cannot discover the semantics of the type URI (e.g.,
   during offline log analysis).

3.1.4.  "detail"

   The "detail" member is a JSON string containing a human-readable
   explanation specific to this occurrence of the problem.

   The "detail" string, if present, ought to focus on helping the client
   correct the problem, rather than giving debugging information.

   Consumers SHOULD NOT parse the "detail" member for information;
   extensions are more suitable and less error-prone ways to obtain such
   information.

3.1.5.  "instance"

   The "instance" member is a JSON string containing a URI reference
   that identifies the specific occurrence of the problem.

   When the "instance" URI is dereferenceable, the problem details
   object can be fetched from it.  It might also return information
   about the problem occurrence in other formats through use of
   proactive content negotiation (see [HTTP], Section 12.5.1).

   When the "instance" URI is not dereferenceable, it serves as a unique
   identifier for the problem occurrence that may be of significance to
   the server but is opaque to the client.

   When "instance" contains a relative URI, it is resolved relative to
   the document's base URI, as per [URI], Section 5.  However, using
   relative URIs can cause confusion, and they might not be handled
   correctly by all implementations.

   For example, if the two resources "https://api.example.org/foo/
   bar/123" and "https://api.example.org/widget/456" both respond with
   an "instance" equal to the relative URI reference "example-instance",
   when resolved they will identify different resources
   ("https://api.example.org/foo/bar/example-instance" and
   "https://api.example.org/widget/example-instance", respectively).  As
   a result, it is RECOMMENDED that absolute URIs be used in "instance"
   when possible, and that when relative URIs are used, they include the
   full path (e.g., "/instances/123").

3.2.  Extension Members

   Problem type definitions MAY extend the problem details object with
   additional members that are specific to that problem type.

   For example, our out-of-credit problem above defines two such
   extensions -- "balance" and "accounts" to convey additional, problem-
   specific information.

   Similarly, the "validation error" example defines an "errors"
   extension that contains a list of individual error occurrences found,
   with details and a pointer to the location of each.

   Clients consuming problem details MUST ignore any such extensions
   that they don't recognize; this allows problem types to evolve and
   include additional information in the future.

   When creating extensions, problem type authors should choose their
   names carefully.  To be used in the XML format (see Appendix B), they
   will need to conform to the Name rule in Section 2.3 of [XML].

4.  Defining New Problem Types

   When an HTTP API needs to define a response that indicates an error
   condition, it might be appropriate to do so by defining a new problem
   type.

   Before doing so, it's important to understand what they are good for
   and what is better left to other mechanisms.

   Problem details are not a debugging tool for the underlying
   implementation; rather, they are a way to expose greater detail about
   the HTTP interface itself.  Designers of new problem types need to
   carefully take into account the Security Considerations (Section 5),
   in particular, the risk of exposing attack vectors by exposing
   implementation internals through error messages.

   Likewise, truly generic problems -- i.e., conditions that might apply
   to any resource on the Web -- are usually better expressed as plain
   status codes.  For example, a "write access disallowed" problem is
   probably unnecessary, since a 403 Forbidden status code in response
   to a PUT request is self-explanatory.

   Finally, an application might have a more appropriate way to carry an
   error in a format that it already defines.  Problem details are
   intended to avoid the necessity of establishing new "fault" or
   "error" document formats, not to replace existing domain-specific
   formats.

   That said, it is possible to add support for problem details to
   existing HTTP APIs using HTTP content negotiation (e.g., using the
   Accept request header to indicate a preference for this format; see
   [HTTP], Section 12.5.1).

   New problem type definitions MUST document:

   1.  a type URI (typically, with the "http" or "https" scheme)

   2.  a title that appropriately describes it (think short)

   3.  the HTTP status code for it to be used with

   Problem type definitions MAY specify the use of the Retry-After
   response header ([HTTP], Section 10.2.3) in appropriate
   circumstances.

   A problem type URI SHOULD resolve to HTML [HTML5] documentation that
   explains how to resolve the problem.

   A problem type definition MAY specify additional members on the
   problem details object.  For example, an extension might use typed
   links [WEB-LINKING] to another resource that machines can use to
   resolve the problem.

   If such additional members are defined, their names SHOULD start with
   a letter (ALPHA, as per [ABNF], Appendix B.1) and SHOULD comprise
   characters from ALPHA, DIGIT ([ABNF], Appendix B.1), and "_" (so that
   it can be serialized in formats other than JSON), and they SHOULD be
   three characters or longer.

4.1.  Example

   For example, if you are publishing an HTTP API to your online
   shopping cart, you might need to indicate that the user is out of
   credit (our example from above) and therefore cannot make the
   purchase.

   If you already have an application-specific format that can
   accommodate this information, it's probably best to do that.
   However, if you don't, you might use one of the problem detail
   formats -- JSON if your API is JSON-based or XML if it uses that
   format.

   To do so, you might look in the registry (Section 4.2) for an
   already-defined type URI that suits your purposes.  If one is
   available, you can reuse that URI.

   If one isn't available, you could mint and document a new type URI
   (which ought to be under your control and stable over time), an
   appropriate title and the HTTP status code that it will be used with,
   along with what it means and how it should be handled.

4.2.  Registered Problem Types

   This specification defines the "HTTP Problem Types" registry for
   common, widely used problem type URIs, to promote reuse.

   The policy for this registry is Specification Required, per
   [RFC8126], Section 4.6.

   When evaluating requests, the designated expert(s) should consider
   community feedback, how well-defined the problem type is, and this
   specification's requirements.  Vendor-specific, application-specific,
   and deployment-specific values are unable to be registered.
   Specification documents should be published in a stable, freely
   available manner (ideally located with a URL) but need not be
   standards.

   Registrations MAY use the prefix "https://iana.org/assignments/http-
   problem-types#" for the type URI.  Note that those URIs may not be
   able to be resolved.

   The following template should be used for registration requests:

   Type URI:  [a URI for the problem type]
   Title:  [a short description of the problem type]
   Recommended HTTP status code:  [what status code is most appropriate
      to use with the type]
   Reference:  [to a specification defining the type]

   See the registry at <https://iana.org/assignments/http-problem-types>
   for details on where to send registration requests.

4.2.1.  about:blank

   This specification registers one Problem Type, "about:blank", as
   follows.

   Type URI:  about:blank
   Title:  See HTTP Status Code
   Recommended HTTP status code:  N/A
   Reference:  RFC 9457

   The "about:blank" URI [ABOUT], when used as a problem type, indicates
   that the problem has no additional semantics beyond that of the HTTP
   status code.

   When "about:blank" is used, the title SHOULD be the same as the
   recommended HTTP status phrase for that code (e.g., "Not Found" for
   404, and so on), although it MAY be localized to suit client
   preferences (expressed with the Accept-Language request header).

   Please note that according to how the "type" member is defined
   (Section 3.1), the "about:blank" URI is the default value for that
   member.  Consequently, any problem details object not carrying an
   explicit "type" member implicitly uses this URI.

5.  Security Considerations

   When defining a new problem type, the information included must be
   carefully vetted.  Likewise, when actually generating a problem --
   however it is serialized -- the details given must also be
   scrutinized.

   Risks include leaking information that can be exploited to compromise
   the system, access to the system, or the privacy of users of the
   system.

   Generators providing links to occurrence information are encouraged
   to avoid making implementation details such as a stack dump available
   through the HTTP interface, since this can expose sensitive details
   of the server implementation, its data, and so on.

   The "status" member duplicates the information available in the HTTP
   status code itself, bringing the possibility of disagreement between
   the two.  Their relative precedence is not clear, since a
   disagreement might indicate that (for example) an intermediary has
   changed the HTTP status code in transit (e.g., by a proxy or cache).
   Generic HTTP software (such as proxies, load balancers, firewalls,
   and virus scanners) are unlikely to know of or respect the status
   code conveyed in this member.

6.  IANA Considerations

   In the "application" registry under the "Media Types" registry, IANA
   has updated the "application/problem+json" and "application/
   problem+xml" registrations to refer to this document.

   IANA has created the "HTTP Problem Types" registry as specified in
   Section 4.2 and populated it with "about:blank" as per Section 4.2.1.

7.  References

7.1.  Normative References

   [ABNF]     Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234,
              DOI 10.17487/RFC5234, January 2008,
              <https://www.rfc-editor.org/info/rfc5234>.

   [HTTP]     Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
              Ed., "HTTP Semantics", STD 97, RFC 9110,
              DOI 10.17487/RFC9110, June 2022,
              <https://www.rfc-editor.org/info/rfc9110>.

   [JSON]     Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", STD 90, RFC 8259,
              DOI 10.17487/RFC8259, December 2017,
              <https://www.rfc-editor.org/info/rfc8259>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [URI]      Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
              <https://www.rfc-editor.org/info/rfc3986>.

   [XML]      Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
              and F. Yergeau, "Extensible Markup Language (XML) 1.0
              (Fifth Edition)", W3C Recommendation REC-xml-20081126,
              November 2008,
              <https://www.w3.org/TR/2008/REC-xml-20081126/>.

7.2.  Informative References

   [ABOUT]    Moonesamy, S., Ed., "The "about" URI Scheme", RFC 6694,
              DOI 10.17487/RFC6694, August 2012,
              <https://www.rfc-editor.org/info/rfc6694>.

   [HTML5]    WHATWG, "HTML: Living Standard",
              <https://html.spec.whatwg.org>.

   [ISO-19757-2]
              ISO, "Information technology -- Document Schema Definition
              Language (DSDL) -- Part 2: Regular-grammar-based
              validation -- RELAX NG", ISO/IEC 19757-2:2008, December
              2008, <https://www.iso.org/standard/52348.html>.

   [JSON-POINTER]
              Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
              "JavaScript Object Notation (JSON) Pointer", RFC 6901,
              DOI 10.17487/RFC6901, April 2013,
              <https://www.rfc-editor.org/info/rfc6901>.

   [JSON-SCHEMA]
              Wright, A., Ed., Andrews, H., Ed., Hutton, B., Ed., and G.
              Dennis, "JSON Schema: A Media Type for Describing JSON
              Documents", Work in Progress, Internet-Draft, draft-
              bhutton-json-schema-01, 10 June 2022,
              <https://datatracker.ietf.org/doc/html/draft-bhutton-json-
              schema-01>.

   [RDFA]     Adida, B., Birbeck, M., McCarron, S., and I. Herman, "RDFa
              Core 1.1 - Third Edition", W3C Recommendation, March 2015,
              <https://www.w3.org/TR/2015/REC-rdfa-core-20150317/>.

   [RFC7807]  Nottingham, M. and E. Wilde, "Problem Details for HTTP
              APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
              <https://www.rfc-editor.org/info/rfc7807>.

   [TAG]      Kindberg, T. and S. Hawke, "The 'tag' URI Scheme",
              RFC 4151, DOI 10.17487/RFC4151, October 2005,
              <https://www.rfc-editor.org/info/rfc4151>.

   [WEB-LINKING]
              Nottingham, M., "Web Linking", RFC 8288,
              DOI 10.17487/RFC8288, October 2017,
              <https://www.rfc-editor.org/info/rfc8288>.

   [XSLT]     Clark, J., Pieters, S., and H. Thompson, "Associating
              Style Sheets with XML documents 1.0 (Second Edition)", W3C
              Recommendation, October 2010,
              <https://www.w3.org/TR/2010/REC-xml-stylesheet-20101028/>.

Appendix A.  JSON Schema for HTTP Problems

   This section presents a non-normative JSON Schema [JSON-SCHEMA] for
   HTTP problem details.  If there is any disagreement between it and
   the text of the specification, the latter prevails.

   # NOTE: '\' line wrapping per RFC 8792
   {
     "$schema": "https://json-schema.org/draft/2020-12/schema",
     "title": "An RFC 7807 problem object",
     "type": "object",
     "properties": {
       "type": {
         "type": "string",
         "format": "uri-reference",
         "description": "A URI reference that identifies the \
   problem type."
       },
       "title": {
         "type": "string",
         "description": "A short, human-readable summary of the \
   problem type."
       },
       "status": {
         "type": "integer",
         "description": "The HTTP status code \
   generated by the origin server for this occurrence of the problem.",
         "minimum": 100,
         "maximum": 599
       },
       "detail": {
         "type": "string",
         "description": "A human-readable explanation specific to \
   this occurrence of the problem."
       },
       "instance": {
         "type": "string",
         "format": "uri-reference",
         "description": "A URI reference that identifies the \
   specific occurrence of the problem. It may or may not yield \
   further information if dereferenced."
       }
     }
   }

Appendix B.  HTTP Problems and XML

   HTTP-based APIs that use XML [XML] can express problem details using
   the format defined in this appendix.

   The RELAX NG schema [ISO-19757-2] for the XML format is:

      default namespace ns = "urn:ietf:rfc:7807"

      start = problem

      problem =
        element problem {
          (  element  type            { xsd:anyURI }?
           & element  title           { xsd:string }?
           & element  detail          { xsd:string }?
           & element  status          { xsd:positiveInteger }?
           & element  instance        { xsd:anyURI }? ),
          anyNsElement
        }

      anyNsElement =
        (  element    ns:*  { anyNsElement | text }
         | attribute  *     { text })*

   Note that this schema is only intended as documentation and not as a
   normative schema that captures all constraints of the XML format.  It
   is possible to use other XML schema languages to define a similar set
   of constraints (depending on the features of the chosen schema
   language).

   The media type for this format is "application/problem+xml".

   Extension arrays and objects are serialized into the XML format by
   considering an element containing a child or children to represent an
   object, except for elements containing only one or more child
   elements named "i", which are considered arrays.  For example, the
   example above appears in XML as follows:

   HTTP/1.1 403 Forbidden
   Content-Type: application/problem+xml
   Content-Language: en

   <?xml version="1.0" encoding="UTF-8"?>
   <problem xmlns="urn:ietf:rfc:7807">
     <type>https://example.com/probs/out-of-credit</type>
     <title>You do not have enough credit.</title>
     <detail>Your current balance is 30, but that costs 50.</detail>
     <instance>https://example.net/account/12345/msgs/abc</instance>
     <balance>30</balance>
     <accounts>
       <i>https://example.net/account/12345</i>
       <i>https://example.net/account/67890</i>
     </accounts>
   </problem>

   This format uses an XML namespace, primarily to allow embedding it
   into other XML-based formats; it does not imply that it can or should
   be extended with elements or attributes in other namespaces.  The
   RELAX NG schema explicitly only allows elements from the one
   namespace used in the XML format.  Any extension arrays and objects
   MUST be serialized into XML markup using only that namespace.

   When using the XML format, it is possible to embed an XML processing
   instruction in the XML that instructs clients to transform the XML,
   using the referenced XSL Transformations (XSLT) code [XSLT].  If this
   code is transforming the XML into (X)HTML, then it is possible to
   serve the XML format, and yet have clients capable of performing the
   transformation display human-friendly (X)HTML that is rendered and
   displayed at the client.  Note that when using this method, it is
   advisable to use XSLT 1.0 in order to maximize the number of clients
   capable of executing the XSLT code.

Appendix C.  Using Problem Details with Other Formats

   In some situations, it can be advantageous to embed problem details
   in formats other than those described here.  For example, an API that
   uses HTML [HTML5] might want to also use HTML for expressing its
   problem details.

   Problem details can be embedded in other formats either by
   encapsulating one of the existing serializations (JSON or XML) into
   that format or by translating the model of a problem detail (as
   specified in Section 3) into the format's conventions.

   For example, in HTML, a problem could be embedded by encapsulating
   JSON in a script tag:

   <script type="application/problem+json">
     {
      "type": "https://example.com/probs/out-of-credit",
      "title": "You do not have enough credit.",
      "detail": "Your current balance is 30, but that costs 50.",
      "instance": "/account/12345/msgs/abc",
      "balance": 30,
      "accounts": ["/account/12345",
                   "/account/67890"]
     }
   </script>

   or by defining a mapping into a Resource Description Framework in
   Attributes (RDFa) [RDFA].

   This specification does not make specific recommendations regarding
   embedding problem details in other formats; the appropriate way to
   embed them depends both upon the format in use and application of
   that format.

Appendix D.  Changes from RFC 7807

   This revision has made the following changes:

   *  Section 4.2 introduces a registry of common problem type URIs

   *  Section 3 clarifies how multiple problems should be treated

   *  Section 3.1.1 provides guidance for using type URIs that cannot be
      dereferenced

Acknowledgements

   The authors would like to thank Jan Algermissen, Subbu Allamaraju,
   Mike Amundsen, Roy Fielding, Eran Hammer, Sam Johnston, Mike McCall,
   Julian Reschke, and James Snell for their comments and suggestions.

Authors' Addresses

   Mark Nottingham
   Prahran
   Australia
   Email: mnot@mnot.net
   URI:   https://www.mnot.net/


   Erik Wilde
   Email: erik.wilde@dret.net
   URI:   http://dret.net/netdret/


   Sanjay Dalal
   United States of America
   Email: sanjay.dalal@cal.berkeley.edu
   URI:   https://github.com/sdatspun2