💾 Archived View for republic.circumlunar.space › users › johngodlee › posts › 2020-10-25-sjplot.gmi captured on 2024-02-05 at 10:35:45. Gemini links have been rewritten to link to archived content
⬅️ Previous capture (2021-12-04)
-=-=-=-=-=-=-
DATE: 2020-10-25
AUTHOR: John L. Godlee
I was forwarded a question about how to customise sjPlot::plot_model()[1]. The colleague wanted to plot slopes of fixed effects at different levels of a random effect, in a random slope linear mixed effects model.
1: https://cran.r-project.org/web/packages/sjPlot/index.html
Load some packages:
library(ggplot2) library(lmerTest) library(sjPlot) library(tibble) library(purrr)
The example model was:
model <- lmerTest::lmer(mpg ~ cyl + disp + hp + drat + wt + qsec + carb + (1|am) + (cyl + disp + hp + drat + wt + qsec + carb|gear), data = mtcars, REML = FALSE)
This model doesn't even converge properly, but resembles the structure of their actual model.
The random effects are plotted like this:
sjPlot::plot_model(model, type="re", vline.color="#A9A9A9", dot.size=1.5, show.values=F, value.offset=.2)[[1]]
This produces a pretty ugly plot, which compresses the x axis and makes it difficult to compare slopes.
Random effects plotted using plot_model()
Specifically, they wanted to plot the random effects for gear only, rearrange the figure to have 3 rows and 3 columns, and order the facets with intercept at the start.
The code below basically simplifies the source code of sjPlot:::plot_type_ranef() for our specific situation.
First, extract random effects for gear:
rand_ef <- ranef(model)[[1]]
Then, extract the standard errors:
vars.m <- attr(rand_ef, "postVar") K <- dim(vars.m)[1] J <- dim(vars.m)[3] names.full <- dimnames(rand_ef) rand_se <- array(NA, c(J, K)) for (j in 1:J) { rand_se[j, ] <- sqrt(diag(as.matrix(vars.m[, , j]))) } dimnames(rand_se) <- list(names.full[[1]], names.full[[2]])
Define some parameters for confidence intervals:
ci.lvl <- 0.95 ci <- 1 - ((1 - ci.lvl) / 2)
Make rownames a column for both effects and SEs:
rand_ef <- rownames_to_column(rand_ef) rand_se <- rownames_to_column(as.data.frame(rand_se))
Define group names:
grp.names <- colnames(rand_ef) alabels <- rand_ef[["rowname"]]
For each effect, calculate values per level of gear:
mydf <- map_df(2:ncol(rand_ef), function(i) { out <- data_frame(estimate = rand_ef[[i]]) # Calculate confidence intervals out$conf.low = rand_ef[[i]] - (stats::qnorm(ci) * rand_se[[i]]) out$conf.high = rand_ef[[i]] + (stats::qnorm(ci) * rand_se[[i]]) # set column names (variable / coefficient name) # as group indicator, and save axis labels and title in variable out$facet <- grp.names[i] out$term <- factor(alabels) # create default grouping, depending on the effect: # split positive and negative associations with outcome # into different groups out$group <- dplyr::if_else(out$estimate > 0, "pos", "neg") return(out) })
Make facet a factor to control plotting order:
mydf$facet <- factor(mydf$facet, levels = c("(Intercept)", "wt", "cyl", "carb", "disp", "drat", "hp", "qsec"))
Create plot:
ggplot() + geom_point(data = mydf, aes(x = estimate, y = term, colour = group)) + geom_errorbarh(data = mydf, aes(xmin = conf.low, xmax = conf.high, y = term, colour = group), height = 0) + scale_colour_manual(values = c("red", "blue")) + facet_wrap(~facet)