💾 Archived View for spam.works › mirrors › textfiles › computers › blum.lst captured on 2024-02-05 at 11:23:58.
⬅️ Previous capture (2023-06-14)
-=-=-=-=-=-=-
BIDIRECTIONAL ASSOCIATIVE MEMORY SYSTEMS IN C++ by Adam Blum [LISTING ONE] //////////////////////////////////////////////////////////// // BAM.HPP Provide vector, matrix, vector pair, matrix, BAM matrix, and // BAM system classes and methods to implement BAM system concept. // Extended note: // This is an implementation of the concept of Bidirectional // Associative Memories as developed by Bart Kosko and others. // It includes the extended concept introduced by Patrick Simpson // of the "BAM System". Where reasonable Simpson's notation has been // been maintained. The presentation benefits greatly from C++ and OOP, in that // (I believe) it is both easier to understand than a "pseudocode" version, // yet more precise (in that it works!) // Developed with Zortech C++ Version 2.0 -- Copyright (c) Adam Blum, 1989,90 #include<stdlib.h> #include<io.h> #include<stdio.h> #include<string.h> #include<limits.h> #include<ctype.h> #include<stream.hpp> #include "debug.h" // debugging devices // where are Zortech's min,max? #define max(a,b) (((a) > (b)) ? (a) : (b)) #define min(a,b) (((a) < (b)) ? (a) : (b)) // will be changed to much higher than these values const ROWS=16; // number of rows (length of first pattern) const COLS=8; // number of columns (length of second pattern) const MAXMATS=10; // maximum number of matrices in BAM system const MAXVEC=16; // default size of vectors class matrix; class bam_matrix; class vec { friend class matrix; friend class bam_matrix; friend class bam_system; int n; int *v; public: // see BAM.CPP for implementations of these vec(int size=MAXVEC,int val=0); // constructor ~vec(); // destructor vec(vec &v1); // copy-initializer int length(); vec& operator=(const vec& v1); // vector assignment vec& operator+(const vec& v1); // vector addition vec& operator+=(const vec& v1); // vector additive-assignment vec& operator*=(int i); // vector multiply by constant // supplied for completeness, but we don't use this now int operator*(const vec& v1); // dot product vec operator*(int c); // multiply by constant // vector transpose multiply needs access to v array int operator==(const vec& v1); int& operator[](int x); friend istream& operator>>(istream& s,vec& v); friend ostream& operator<<(ostream& s, vec& v); }; //vector class class vecpair; class matrix { protected: // bam_matrix (a derived class) will need to use these members // preferred to "friend class", since there may be many derived // classes which need to use this int **m; // the matrix representation int r,c; // number of rows and columns public: // constructors matrix(int n=ROWS,int p=COLS); matrix(const vec& v1,const vec& v2); matrix(const vecpair& vp); matrix(matrix& m1); // copy-initializer ~matrix(); int depth(); int width(); matrix& operator=(const matrix& m1); matrix& operator+(const matrix& m1); matrix& operator+=(const matrix& m1); vec colslice(int col); vec rowslice(int row); friend ostream& operator<<(ostream& s,matrix& m1); }; // matrix class class vecpair { friend class matrix; friend class bam_matrix; friend class bam_system; int flag; // flag signalling whether encoding succeeded vec a; vec b; public: vecpair(int n=ROWS,int p=COLS); // constructor vecpair(const vec& A,const vec& B); vecpair(const vecpair& AB); // copy initializer ~vecpair(); vecpair& operator=(const vecpair& v1); int operator==(const vecpair& v1); friend istream& operator>>(istream& s,vecpair& v); friend ostream& operator<<(ostream& s,vecpair& v); friend matrix::matrix(const vecpair& vp); }; class bam_matrix: public matrix { private: int K; // number of patterns stored in matrix vecpair *C; // actual pattern pairs stored int feedthru(const vec&A,vec& B); int sigmoid(int n); // sigmoid threshold function public: bam_matrix(int n=ROWS,int p=COLS); ~bam_matrix(); // but we supply it with the actual matrix A|B (W is implied) void encode(const vecpair& AB); // self-ref version // uncode only necessary for BAM-system void uncode(const vecpair& AB); // self-ref version vecpair recall(const vec& A); int check(); int check(const vecpair& AB); // Lyapunov energy function: E=-AWBtranspose int energy(const matrix& m1); // Lyapunov energy function }; // BAM matrix class bam_system { bam_matrix *W[MAXMATS]; int M; // number of matrices public: bam_system(int M=1); ~bam_system(); void encode(const vecpair& AB); vecpair& recall(const vec& A); // train equiv. to Simpson's encode of all pairs void train(char *patternfile); friend ostream& operator<<(ostream& s,bam_system& b); }; // BAM system class [LISTING TWO] /////////////////////////////////////// // BAM.CPP Provide vector, matrix, vector pair, matrix, BAM matrix, and BAM // system classes to implement BAM systems // Extended note: // This is an implementation of the concept of Bidirectional // Associative Memories as developed by Bart Kosko and others. // It includes the extended concept introduced by Patrick Simpson // of the "BAM System". Where reasonable Simpson's notation has been // been maintained. The presentation benefits greatly from C++ and OOP, in that // (I believe) it is both easier to understand than a "pseudocode" version, // yet more precise (in that it works!) // Developed with Zortech C++ Version 2.0 -- Copyright (c) 1989,90 Adam Blum #include"bam.hpp" /////////////////////////////////// // vector class member functions vec::vec(int size,int val) { v = new int[size]; n=size; for(int i=0;i<n;i++) v[i]=0; } // constructor vec::~vec() { delete v;} // destructor vec::vec(vec& v1) // copy-initializer { v=new int[n=v1.n]; for(int i=0;i<n;i++) v[i]=v1.v[i]; } vec& vec::operator=(const vec& v1) { delete v; v=new int[n=v1.n]; for(int i=0;i<n;i++) v[i]=v1.v[i]; return *this; } vec& vec::operator+(const vec& v1) { vec sum(v1.n); sum.n=v1.n; for(int i=0;i<v1.n;i++) sum.v[i]=v1.v[i]+v[i]; return sum; } vec& vec::operator+=(const vec& v1) { for(int i=0;i<v1.n;i++) v[i]+=v1.v[i]; return *this; } vec vec::operator*(int c) { vec prod(length()); for(int i=0;i<prod.n;i++) prod.v[i]=v[i]*c; return prod; } int vec::operator*(const vec& v1) // dot-product { int sum=0; for(int i=0;i<min(n,v1.n);i++) sum+=(v1.v[i]*v[i]); //D(cout << "dot product " << *this << v1 << sum << "\n";) return sum; } int vec::operator==(const vec& v1) { if(v1.n!=n)return 0; for(int i=0;i<min(n,v1.n);i++){ if(v1.v[i]!=v[i]){ return 0; } } return 1; } int& vec::operator[](int x) { if(x<length() && x>=0) return v[x]; else cout << "vec index out of range"; } int vec::length(){return n;} // length method istream& operator>>(istream& s,vec &v) // format: list of ints followed by ',' { char c; v.n=0; v.v=new int[MAXVEC]; for(;;){ s>>c; if(s.eof())return s; if(c==',')return s; if(isspace(c))continue; v.v[v.n++]=((c!='0')?1:-1); } } ostream& operator<<(ostream& s, vec& v) // format: list of ints followed by ',' { for(int i=0;i<v.n;i++) s << (v.v[i]<0?0:1); s << ","; return s; } /////////////////////////////// // matrix member functions matrix::matrix(int n,int p) { //D(cout << "Constructing " << n << " x " << p << " matrix.\n";) m=new int *[n]; for(int i=0;i<n;i++){ m[i]=new int[p]; for(int j=0;j<p;j++) m[i][j]=0; } r=n; c=p; } // constructor matrix::matrix(const vecpair& vp) { //D(cout << "Constructing matrix from: " << vp;) r=vp.a.length(); c=vp.b.length(); m=new int *[r]; for(int i=0;i<r;i++){ m[i]=new int[c]; for(int j=0;j<c;j++) m[i][j]=vp.a.v[i]*vp.b.v[j]; } }// constructor matrix::matrix(const vec& v1,const vec& v2) { //D(cout << "Constructing matrix from " << v1 << v2 << "\n";) r=v1.length(); c=v2.length(); m=new int *[r]; for(int i=0;i<r;i++){ m[i]=new int[c]; for(int j=0;j<c;j++) m[i][j]=v1.v[i]*v2.v[j]; } }// constructor matrix::matrix(matrix& m1) // copy-initializer { //D(cout << "matrix copy-initializer\n"; ) r=m1.r; c=m1.c; m=new int *[r]; for(int i=0;i<r;i++){ m[i]=new int[c]; for(int j=0;j<c;j++) m[i][j]=m1.m[i][j]; } } matrix::~matrix() { for(int i=0;i<r;i++) delete m[i]; delete m; } // destructor matrix& matrix::operator=(const matrix& m1) { for(int i=0;i<r;i++) delete m[i]; r=m1.r; c=m1.c; m=new int*[r]; for(i=0;i<r;i++){ m[i]=new int[c]; for(int j=0;j<r;j++) m[i][j]=m1.m[i][j]; } return *this; } matrix& matrix::operator+(const matrix& m1) { matrix sum(r,c); for(int i=0;i<r;i++) for(int j=0;j<r;j++) sum.m[i][j]=m1.m[i][j]+m[i][j]; return sum; } matrix& matrix::operator+=(const matrix& m1) { //D(cout << "matrix additive assignment\n";) for(int i=0;i<r&&i<m1.r;i++) for(int j=0;j<c&&j<m1.c;j++) m[i][j]+=(m1.m[i][j]); return *this; } vec matrix::colslice(int col) { vec temp(r); for(int i=0;i<r;i++) temp.v[i]=m[i][col]; return temp; } vec matrix::rowslice(int row) { vec temp(c); for(int i=0;i<c;i++) temp.v[i]=m[row][i]; return temp; } int matrix::depth(){return r;} int matrix::width(){return c;} ostream& operator<<(ostream& s,matrix& m1) // print a matrix { for(int i=0;i<m1.r;i++){ for(int j=0;j<m1.c;j++) s << m1.m[i][j] << " "; s << "\n"; } } ////////////////////////////////////////// // vecpair member functions // constructor vecpair::vecpair(int n,int p) { } vecpair::vecpair(const vec& A,const vec& B) {a=A;b=B;} vecpair::vecpair(const vecpair& AB) {*this=vecpair(AB.a,AB.b);} vecpair::~vecpair() {} // destructor vecpair& vecpair::operator=(const vecpair& v1) { a=v1.a; b=v1.b; return *this; } int vecpair::operator==(const vecpair& v1) { return (a == v1.a) && (b == v1.b); } istream& operator>>(istream& s,vecpair& v1) // input a vector pair { s>>v1.a>>v1.b; return s; } ostream& operator<<(ostream& s,vecpair& v1) // print a vector pair { return s<<v1.a<<v1.b<<"\n"; } ///////////////////////////////// //bam_matrix member functions bam_matrix::bam_matrix(int n,int p):(n,p) { // the maximum number of pattern pairs storable // is around min(n,p) where n and p are // the dimensionality of the matrix C=new vecpair[min(n,p)*2]; K=0; } bam_matrix::~bam_matrix() { } // destructor void bam_matrix::encode(const vecpair& AB) // encode a pattern pair { //D(cout << "BAM Matrix encoding: " << AB;) matrix T(AB); (*this)+=T; // add the matrix transpose to the current matrix C[K]=AB; K++; } void bam_matrix::uncode(const vecpair& AB) // get rid of a stored pattern (by encoding A-B complement) { //D(cout << "uncode\n";) vec v=AB.b*-1; matrix T(AB.a,v); // T is A transpose B complement *this+=T;// add the matrix transpose to the current matrix K--; } vecpair bam_matrix::recall(const vec& A) // BAM Matrix recall algorithm (used by BAM SYSTEM recall) { int givenrow=(A.length()==width()); D(cout<<"BAM matrix recall of" << A << givenrow?"(row)\n":"(col)\n";) vec B(givenrow?depth():width(),1); for(;;){ // feed vectors through matrix until "resonant" pattern-pair feedthru(A,B); if(feedthru(B,A))break; // stop when returned A = input A } D(cout<< "resonant pair " << A << "\n and " << B << "\n";) if(givenrow) return vecpair(B,A); else return vecpair(A,B); } int bam_matrix::feedthru(const vec&A,vec& B) { //D(cout << "Feeding " << A << "\n"; ) vec temp=B;int n; for(int i=0;i<B.length();i++){ if(A.length()==width()) n=sigmoid(A*rowslice(i)); else n=sigmoid(A*colslice(i)); if(n) B.v[i]=n; } return B==temp; } int bam_matrix::sigmoid(int n) // VERY simple (but classic one for BAM) threshold function // // 1 -------------- // | // - ----------- + // -1 { if(n<0)return -1; if(n>0)return 1; return 0; } int bam_matrix::check() // check to see if we have successfully encoded pattern-pair into this matrix { D(cout << "Check BAM matrix for " << K << " pattern pairs\n";) vecpair AB; for(int i=0;i<K;i++){ AB=recall(C[i].a); if(!(AB==C[i])){ D(cout <<"failed check\n ";) return 0; } } D(cout << "passed check\n ";) return 1; } int bam_matrix::check(const vecpair& AB) { // different check routine for orthogonal construction BAM //check to see energy of present pattern pair to matrix // is equal to orthogonal BAM energy matrix T(AB); return energy(T)== -depth()*width(); } int bam_matrix::energy(const matrix& m1) { int sum=0; for(int i=0;i<depth();i++) for(int j=0;j<width();j++) sum+=(m1.m[i][j]*this->m[i][j]); D(cout << "Energy of matrix " << -sum << "\n";) return -sum; } /////////////////////////////////////////// // bam system functions // top level of system (for now) // constructor bam_system::bam_system(int n) { M=n; for(int i=0;i<M;i++) W[i]=new bam_matrix; } bam_system::~bam_system() // destructor { for(int i=0;i<M;i++) delete W[i]; } void bam_system::encode(const vecpair& AB) // encode the pattern pair AB into the BAOM system { D(cout << "BAM System encode\n";) for(int h=0;h<M;h++){ W[h]->encode(AB); if(!W[h]->check()) W[h]->uncode(AB); else break; } if(h==M){ // all matrices full, add another if(h<MAXMATS){ W[M]=new bam_matrix(); W[M]->encode(AB); M++; } else{ cout << "BAM System full\n"; exit(1); } } } vecpair& bam_system::recall(const vec& A) // presented with pattern A, recall will return pattern-PAIR { vecpair XY[MAXMATS];matrix *M1,*M2; int E,minimum=0,emin=INT_MAX; D(cout << "BAM System recall\n";) for(int h=0;h<M;h++){ XY[h]=W[h]->recall(A); D(cout << h <<"-th matrix, returned vecpair "<< XY[h];) M1=new matrix(XY[h]); E=W[h]->energy(*M1); if(A.length()==W[h]->width()) M2=new matrix(XY[h].a,A); else M2=new matrix(A,XY[h].b); if ( ( E-(W[h]->depth()*W[h]->width()) < emin ) && (E==W[h]->energy(*M2)) ) { emin=E-(W[h]->depth()*W[h]->width()); minimum=h; } delete M1; delete M2; } return XY[minimum]; } void bam_system::train(char *patternfile) // A "multiple-pair" encode - which Simpson calls "encode" // this could be used for initial BAM Sys training. However an up // and running BAM Sys should only need to use "encode". { FILE *f=fopen(patternfile,"r");int n=0; filebuf sfile(f); istream s(&sfile,0); vecpair AB; for(;;){ s >> AB; if(s.eof())break; D(cout << "Encoding " << n++ << "-th pattern pair:\n" << AB;) encode(AB); } D(cout << "Completed training from " << patternfile;) } ostream& operator<<(ostream& s,bam_system& b) // operator to print out contents of entire BAM system { for(int i=0;i<b.M;i++) s<< "BAM Matrix " << i << ": \n" << *(b.W[i]) << "\n"; } [LISTING THREE] //////////////////////// // TESTBAM.HPP // Interactive BAM System Demonstration Program. Used to verify BAM system // algorithms and demonstrate them on an abstract (i.e. just 0s and 1s) case. // Developed with Zortech C++ 2.0 -- Copyright (c) 1989,90 Adam Blum #include"bam.hpp" vec v; vecpair AB; bam_system B; char *p; char patternfile[16]="TEST.FIL"; // file where test data is stored int trace=0; // SET TRACE=<whatever> at DOS prompt to turn trace on main() { cout << "Interactive BAM System Demonstration\n"; trace=(p=getenv("TRACE"))?1:0; cout << "Training from " << patternfile << "\n"; B.train(patternfile); D(cout << "Resulting BAM System\n" << B;) cout <<"Enter patterns as 0's and 1's terminated by comma.\n" <<"Patterns must be length of " << ROWS << " or " << COLS <<".\n" << "Null vector (just "","") to end.\n\n" ; for(;;){ cout << "Enter pattern: "; cin >> v; if(!v.length())break; if(v.length()!=ROWS && v.length()!=COLS){ cout << "Wrong length.\n"; continue; } AB=B.recall(v); cout << "Recalled pattern pair\n" << AB; } } [LISTING FOUR] 1100101011010011,11101010, 0110110111110110,11010101, 1101111001010101,11110010, 1010101000010111,11001101, 0011001101011011,11110100, 1100101011010011,11101010, 0110100111110110,11010101, 1101110101010101,11110010, 1011101010010111,11001101, 0001011101011011,11110100, 1100101001010011,11101010, 0110110110110110,11010101, 1100111011010101,11110011, 1010000100010111,11001101, 0001101101011011,11110110, 1100100011010011,11100110, 0110110011110110,11010101, 1101111001010101,11110011, 1010100000011111,11001101, 0001100101111011,11111000, 1100101011010011,11011010, 0010100111110110,11010101, 1101111101010101,11110010, 1010111000010111,11101101, 0001000001011011,11110100, 1100101011010011,11101010, 0110110111110110,11010101, 1101111000010101,11110110, 1010100111010111,11001101, 0001000101011011,11110100, 0110110101110110,11010111, 1101111001010101,11110110, 1010111100110111,11001101, 0001000101011011,11110100, 1100101010010011,11101010, 0110110111110110,11010101, 1101111001010101,11110010, 1010110000010111,11001101, 0011000101011011,11110100, 0011010101111011,10010111, [LISTING FIVE] # TESTBAM.MK # Make file for BAM System implementation tester # Uses Microsoft Make # Compiler: Zortech C++ 2.0 # To make with diagnostics enabled: # make CFLAGS="-DDEBUG=1" testbam.mk # CFLAGS= .cpp.obj: ztc -c $(CFLAGS) $*.cpp bam.obj: bam.cpp bam.hpp testbam.obj: testbam.cpp bam.hpp testbam.exe: testbam.obj bam.obj blink testbam bam;