💾 Archived View for oortcloud.flounder.online › junk › 2funs.gmi captured on 2024-02-05 at 09:23:17. Gemini links have been rewritten to link to archived content
-=-=-=-=-=-=-
f arg := exp <=> f := exp @Â arg fac (n>1) := n*fac(n-1)
application is so useful there are multiple ways (at different orders and operator precedence) to express it
f x <=> f`x <=> f <| x <=> x |> f <=> (`x) f
(f$g) <| x := f <| g <| x
FNil <| x := x
[f] either applies f or returns the argument unchanged. {f} applies f until reaching a fixpoint.
[f] x := (f :: FNil) x
{f} x := (f && FNil) $ Star f <| x
(f&&g), (f||g), (f::g), and (f//g) are analogous to the finite map case. All except for (::) are also available at (*),(%), and (/) respectively.
todo: patterns!
fac := (n*fac(n-1) @ (n>1) !! 1 @ (n<=1))
Const x := x @ _
fac := (n*fac(n-1) @ (n>1) :: Const(1)) NB. using nesting
unlike for finite maps, (≅) and (≲) are not computable; best we can do atm are (==) and (<=)
f ≅ g <=> f x == g x f ≲ g <=> f x ~ g x f == g ==> f ≅ g f <= g ==> f ≲ g f ≲ g ==> (f||h) ≲ (g||h) f ≲ g ==> (f&&h) ≲ (g&&h) f ≲ g ==> (f!!h) ≲ (g!!h) f ≲ g ==> dom f~dom g ==> (f::h) ≲ (g::h) f ≲ g ==> (h//f) ≲ (h//g) f ≲ g ==> dom f~dom g ==> (f//h) ≲ (g//h) f ≲ g ==> f$h ≲ g$h f ≲ g ==> h$f ≲ h$g f ≲ g ==> dom f~dom g ==> [f] ≲ [g] (f||g) $ h == (f$h) || (g$h) f $ (g||h) == (f$g) || (f$h) (f&&g) $ h == (f$h) && (g$h) f $ (g&&h) == ((f$G g)||(f$G h) $ G: gang(g,h)) (f::g) $ h == ((F f$h)||(F g$h) $ F: fatbar(f,g)) f $ (g :: h) == (f$g :: f$h) f~Total <=> not(f x~Null) f~Total && g~Total ==> (f||g)~Total f~Total && g~Total && (dom f & dom g)~Null ==> (f&&g)~Total f~Total && g~Total && (dom f & dom g)~Null ==> (f!!g)~Total f~Total && g~Total ==> (f::g)~Total f~Total && g~Total ==> (f//g)~Total f~Total && g~Total ==> (g//f)~Total
furthermore, if f is an element (f x is either Null, Nuts, or an element) and g is an element, the following are also elements: (f&&g), (f!!g), (f::g), (f//g), (g//f).
add0 n m := n+m <=> add0 := n+m @ m @ n
add1 (n,m) := n+m <=> add1 := n+m @ n,m
add0 x y == add1(x,y)
gcd: min $ {x,y-x @ x,(y>x) :: x-y,y @ x,(y<x)}