💾 Archived View for gmi.noulin.net › rfc › rfc2875.gmi captured on 2023-12-28 at 22:04:40. Gemini links have been rewritten to link to archived content

View Raw

More Information

⬅️ Previous capture (2023-01-29)

-=-=-=-=-=-=-

Obsoleted by:

RFC6955

Keywords: Diffie-Hellman, certificate, security, encryption







Network Working Group                                  H. Prafullchandra
Request for Comments: 2875                             Critical Path Inc
Category: Standards Track                                      J. Schaad
                                                               July 2000


             Diffie-Hellman Proof-of-Possession Algorithms

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

   This document describes two methods for producing an integrity check
   value from a Diffie-Hellman key pair.  This behavior is needed for
   such operations as creating the signature of a PKCS #10 certification
   request.  These algorithms are designed to provide a proof-of-
   possession rather than general purpose signing.

1. Introduction

   PKCS #10 [RFC2314] defines a syntax for certification requests. It
   assumes that the public key being requested for certification
   corresponds to an algorithm that is capable of signing/encrypting.
   Diffie-Hellman (DH) is a key agreement algorithm and as such cannot
   be directly used for signing or encryption.

   This document describes two new proof-of-possession algorithms using
   the Diffie-Hellman key agreement process to provide a shared secret
   as the basis of an integrity check value.  In the first algorithm,
   the value is constructed for a specific recipient/verifier by using a
   public key of that verifier.  In the second algorithm, the value is
   constructed for arbitrary verifiers.









Prafullchandra & Schaad     Standards Track                     [Page 1]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


2. Terminology

   The following definitions will be used in this document

   DH certificate = a certificate whose SubjectPublicKey is a DH public
   value and is signed with any signature algorithm (e.g. RSA or DSA).

3. Static DH Proof-of-Possession Process

   The steps for creating a DH POP are:

   1. An entity (E) chooses the group parameters for a DH key
      agreement.

      This is done simply by selecting the group parameters from a
      certificate for the recipient of the POP process.

      A certificate with the correct group parameters has to be
      available. Let these common DH parameters be g and p; and let
      this DH key-pair be known as the Recipient key pair (Rpub and
      Rpriv).

      Rpub = g^x mod p         (where x=Rpriv, the private DH value and
                                ^ denotes exponentiation)

   2. The entity generates a DH public/private key-pair using the
      parameters from step 1.

      For an entity E:

         Epriv = DH private value = y
         Epub  = DH public value  = g^y mod p

   3. The POP computation process will then consist of:

      a) The value to be signed is obtained. (For a RFC2314 object, the
         value is the DER encoded certificationRequestInfo field
         represented as an octet string.) This will be the `text'
         referred to in [RFC2104], the data to which HMAC-SHA1 is
         applied.

      b) A shared DH secret is computed, as follows,

                shared secret = ZZ = g^xy mod p







Prafullchandra & Schaad     Standards Track                     [Page 2]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


         [This is done by the entity E as Rpub^y and by the Recipient
         as Epub^x, where Rpub is retrieved from the Recipient's DH
         certificate (or is the one that was locally generated by the
         Entity) and Epub is retrieved from the actual certification
         request.]

      c) A temporary key K is derived from the shared secret ZZ as
         follows:

            K = SHA1(LeadingInfo | ZZ | TrailingInfo),
               where "|" means concatenation.

            LeadingInfo ::= Subject Distinguished Name from certificate
            TrailingInfo ::= Issuer Distinguished Name from certificate

      d) Compute HMAC-SHA1 over the data `text' as per [RFC2104] as:

            SHA1(K XOR opad, SHA1(K XOR ipad, text))

         where,
            opad (outer pad) = the byte 0x36 repeated 64 times and
            ipad (inner pad) = the byte 0x5C repeated 64 times.

         Namely,

          (1)  Append zeros to the end of K to create a 64 byte string
               (e.g., if K is of length 16 bytes it will be appended
               with 48 zero bytes 0x00).
          (2)  XOR (bitwise exclusive-OR) the 64 byte string computed
               in step (1) with ipad.
          (3)  Append the data stream `text' to the 64 byte string
               resulting from step (2).
          (4)  Apply SHA1 to the stream generated in step (3).
          (5)  XOR (bitwise exclusive-OR) the 64 byte string computed
               in step (1) with opad.
          (6)  Append the SHA1 result from step (4) to the 64 byte
               string resulting from step (5).
          (7)  Apply SHA1 to the stream generated in step (6) and
               output the result.

         Sample code is also provided in [RFC2104].

      e) The output of (d) is encoded as a BIT STRING (the Signature
         value).







Prafullchandra & Schaad     Standards Track                     [Page 3]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


   The POP verification process requires the Recipient to carry out
   steps (a) through (d) and then simply compare the result of step (d)
   with what it received as the signature component. If they match then
   the following can be concluded:

      a) The Entity possesses the private key corresponding to the
         public key in the certification request because it needed the
         private key to calculate the shared secret; and
      b) Only the Recipient that the entity sent the request to could
         actually verify the request because they would require their
         own private key to compute the same shared secret. In the case
         where the recipient is a Certification Authority, this
         protects the Entity from rogue CAs.

   ASN Encoding

   The ASN.1 structures associated with the static Diffie-Hellman POP
   algorithm are:

      id-dhPop-static-HMAC-SHA1 OBJECT IDENTIFIER ::= { id-pkix
         id-alg(6) 3}

      DhPopStatic ::= SEQUENCE {
         issuerAndSerial IssuerAndSerialNumber OPTIONAL,
         hashValue       MessageDigest
      }

     issuerAndSerial is the issuer name and serial number of the
     certificate from which the public key was obtained.  The
     issuerAndSerial field is omitted if the public key did not come
     from a certificate.

     hashValue contains the result of the SHA-1 HMAC operation in step
     3d.

   DhPopStatic is encoded as a BIT STRING and is the signature value
   (i.e. encodes the above sequence instead of the raw output from 3d).

4. Discrete Logarithm Signature

   The use of a single set of parameters for an entire public key
   infrastructure allows all keys in the group to be attacked together.

   For this reason we need to create a proof of possession for Diffie-
   Hellman keys that does not require the use of a common set of
   parameters.





Prafullchandra & Schaad     Standards Track                     [Page 4]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


   This POP is based on the Digital Signature Algorithm, but we have
   removed the restrictions imposed by the [FIPS-186] standard.  The use
   of this method does impose some additional restrictions on the set of
   keys that may be used, however if the key generation algorithm
   documented in [DH-X9.42] is used the required restrictions are met.
   The additional restrictions are the requirement for the existence of
   a q parameter. Adding the q parameter is generally accepted as a good
   practice as it allows for checking of small group attacks.

   The following definitions are used in the rest of this section:

      p is a large prime
      g = h(p-1)/q mod p ,
         where h is any integer 1 < h < p-1 such that h(p-1) mod q > 1
         (g has order q mod p)
      q is a large prime
      j is a large integer such that p = qj + 1

      x is a randomly or pseudo-randomly generated integer with
         1 < x < q
      y = g^x mod p

   Note: These definitions match the ones in [DH-X9.42].

4.1 Expanding the Digest Value

   Besides the addition of a q parameter, [FIPS-186] also imposes size
   restrictions on the parameters.  The length of q must be 160-bits
   (matching output of the SHA-1 digest algorithm) and length of p must
   be 1024-bits.  The size restriction on p is eliminated in this
   document, but the size restriction on q is replaced with the
   requirement that q must be at least 160-bits.  (The size restriction
   on q is identical with that in [DH-X9.42].)

   Given that there is not a random length-hashing algorithm, a hash
   value of the message will need to be derived such that the hash is in
   the range from 0 to q-1.  If the length of q is greater than 160-bits
   then a method must be provided to expand the hash length.

   The method for expanding the digest value used in this section does
   not add any additional security beyond the 160-bits provided by SHA-
   1.  The value being signed is increased mainly to enhance the
   difficulty of reversing the signature process.








Prafullchandra & Schaad     Standards Track                     [Page 5]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


   This algorithm produces m the value to be signed.

   Let L = the size of q (i.e. 2^L <= q < 2^(L+1)).  Let M be the
   original message to be signed.

   1. Compute d = SHA-1(M), the SHA-1 digest of the original message.

   2. If L == 160 then m = d.

   3. If L > 160 then follow steps (a) through (d) below.

      a) Set n = L / 160, where / represents integer division,
         consequently, if L = 200, n = 1.
      b) Set m = d, the initial computed digest value.
      c) For i = 0 to n - 1
         m = m | SHA(m),  where "|" means concatenation.
      d) m = LEFTMOST(m, L-1), where LEFTMOST returns the L-1 left most
         bits of m.

   Thus the final result of the process meets the criteria that 0 <= m <
   q.

4.2 Signature Computation Algorithm

   The signature algorithm produces the pair of values (r, s), which is
   the signature. The signature is computed as follows:

   Given m, the value to be signed, as well as the parameters defined
   earlier in section 5.

   1. Generate a random or pseudorandom integer k, such that 0 < k^-1 <
      q.

   2. Compute r = (g^k mod p) mod q.

   3. If r is zero, repeat from step 1.

   4. Compute s = (k^-1 (m + xr)) mod q.

   5. If s is zero, repeat from step 1.

4.3 Signature Verification Algorithm

   The signature verification process is far more complicated than is
   normal for the Digital Signature Algorithm, as some assumptions about
   the validity of parameters cannot be taken for granted.





Prafullchandra & Schaad     Standards Track                     [Page 6]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


   Given a message m to be validated, the signature value pair (r, s)
   and the parameters for the key.

   1. Perform a strong verification that p is a prime number.

   2. Perform a strong verification that q is a prime number.

   3. Verify that q is a factor of p-1, if any of the above checks fail
      then the signature cannot be verified and must be considered a
      failure.

   4. Verify that r and s are in the range [1, q-1].

   5. Compute w = (s^-1) mod q.

   6. Compute u1 = m*w mod q.

   7. Compute u2 = r*w mod q.

   8. Compute v = ((g^u1 * y^u2) mod p) mod q.

   9. Compare v and r, if they are the same then the signature verified
      correctly.

4.4 ASN Encoding

   The signature is encoded using

      id-alg-dhPOP OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 4}

   The parameters for id-alg-dhPOP are encoded as DomainParameters
   (imported from [PROFILE]).  The parameters may be omitted in the
   signature, as they must exist in the associated key request.

   The signature value pair r and s are encoded using Dss-Sig-Value
   (imported from [PROFILE]).

5. Security Considerations

   In the static DH POP algorithm, an appropriate value can be produced
   by either party.  Thus this algorithm only provides integrity and not
   origination service.  The Discrete Logarithm algorithm provides both
   integrity checking and origination checking.








Prafullchandra & Schaad     Standards Track                     [Page 7]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


   All the security in this system is provided by the secrecy of the
   private keying material. If either sender or recipient private keys
   are disclosed, all messages sent or received using that key are
   compromised. Similarly, loss of the private key results in an
   inability to read messages sent using that key.

   Selection of parameters can be of paramount importance.  In the
   selection of parameters one must take into account the
   community/group of entities that one wishes to be able to communicate
   with.  In choosing a set of parameters one must also be sure to avoid
   small groups.  [FIPS-186] Appendixes 2 and 3 contain information on
   the selection of parameters.  The practices outlined in this document
   will lead to better selection of parameters.

6. References

   [FIPS-186]  Federal Information Processing Standards Publication
               (FIPS PUB) 186, "Digital Signature Standard", 1994 May
               19.

   [RFC2314]   Kaliski, B., "PKCS #10: Certification Request Syntax
               v1.5", RFC 2314, October 1997.

   [RFC2104]   Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
               Hashing for Message Authentication", RFC 2104, February
               1997.

   [PROFILE]   Housley, R., Ford, W., Polk, W., and D. Solo, "Internet
               X.509 Public Key Infrastructure: Certificate and CRL
               Profile", RFC 2459, January 1999.

   [DH-X9.42]  Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC
               2631, June 1999.

7. Authors' Addresses

   Hemma Prafullchandra
   Critical Path Inc.
   5150 El Camino Real, #A-32
   Los Altos, CA 94022

   Phone: (640) 694-6812
   EMail: hemma@cp.net


   Jim Schaad

   EMail: jimsch@exmsft.com



Prafullchandra & Schaad     Standards Track                     [Page 8]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


Appendix A.  ASN.1 Module

   DH-Sign DEFINITIONS IMPLICIT TAGS ::=

   BEGIN
   --EXPORTS ALL
   -- The types and values defined in this module are exported for use
   -- in the other ASN.1 modules. Other applications may use them
   -- for their own purposes.

   IMPORTS
      IssuerAndSerialNumber, MessageDigest
      FROM CryptographicMessageSyntax { iso(1) member-body(2)
           us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
           modules(0) cms(1) }

      Dss-Sig-Value, DomainParameters
      FROM PKIX1Explicit88 {iso(1) identified-organization(3) dod(6)
           internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
           id-pkix1-explicit-88(1)};

      id-dh-sig-hmac-sha1 OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 3}

      DhSigStatic ::= SEQUENCE {
          IssuerAndSerial IssuerAndSerialNumber OPTIONAL,
          hashValue       MessageDigest
      }

      id-alg-dh-pop OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 4}

   END




















Prafullchandra & Schaad     Standards Track                     [Page 9]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


Appendix B. Example of Static DH Proof-of-Possession

   The following example follows the steps described earlier in section
   3.

   Step 1: Establishing common Diffie-Hellman parameters. Assume the
   parameters are as in the DER encoded certificate. The certificate
   contains a DH public key signed by a CA with a DSA signing key.

  0 30 939: SEQUENCE {
  4 30 872:   SEQUENCE {
  8 A0   3:     [0] {
 10 02   1:       INTEGER 2
          :       }
 13 02   6:     INTEGER
          :       00 DA 39 B6 E2 CB
 21 30  11:     SEQUENCE {
 23 06   7:       OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)
 32 05   0:       NULL
          :       }
 34 30  72:     SEQUENCE {
 36 31  11:       SET {
 38 30   9:         SEQUENCE {
 40 06   3:           OBJECT IDENTIFIER countryName (2 5 4 6)
 45 13   2:           PrintableString 'US'
          :           }
          :         }
 49 31  17:       SET {
 51 30  15:         SEQUENCE {
 53 06   3:           OBJECT IDENTIFIER organizationName (2 5 4 10)
 58 13   8:           PrintableString 'XETI Inc'
          :           }
          :         }
 68 31  16:       SET {
 70 30  14:         SEQUENCE {
 72 06   3:           OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
 77 13   7:           PrintableString 'Testing'
          :           }
          :         }
 86 31  20:       SET {
 88 30  18:         SEQUENCE {
 90 06   3:           OBJECT IDENTIFIER commonName (2 5 4 3)
 95 13  11:           PrintableString 'Root DSA CA'
          :           }
          :         }
          :       }
108 30  30:     SEQUENCE {



Prafullchandra & Schaad     Standards Track                    [Page 10]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


110 17  13:       UTCTime '990914010557Z'
125 17  13:       UTCTime '991113010557Z'
          :       }
140 30  70:     SEQUENCE {
142 31  11:       SET {
144 30   9:         SEQUENCE {
146 06   3:           OBJECT IDENTIFIER countryName (2 5 4 6)
151 13   2:           PrintableString 'US'
          :           }
          :         }
155 31  17:       SET {
157 30  15:         SEQUENCE {
159 06   3:           OBJECT IDENTIFIER organizationName (2 5 4 10)
164 13   8:           PrintableString 'XETI Inc'
          :           }
          :         }
174 31  16:       SET {
176 30  14:         SEQUENCE {
178 06   3:           OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
183 13   7:           PrintableString 'Testing'
          :           }
          :         }
192 31  18:       SET {
194 30  16:         SEQUENCE {
196 06   3:           OBJECT IDENTIFIER commonName (2 5 4 3)
201 13   9:           PrintableString 'DH TestCA'
          :           }
          :         }
          :       }
212 30 577:     SEQUENCE {
216 30 438:       SEQUENCE {
220 06   7:         OBJECT IDENTIFIER dhPublicKey (1 2 840 10046 2 1)
229 30 425:         SEQUENCE {
233 02 129:           INTEGER
          :             00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
          :             C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
          :             F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
          :             51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
          :             5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
          :             8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
          :             32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
          :             D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
          :             27
365 02 128:           INTEGER
          :             26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
          :             06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
          :             64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57



Prafullchandra & Schaad     Standards Track                    [Page 11]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


          :             86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
          :             4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
          :             47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
          :             39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
          :             95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
496 02  33:           INTEGER
          :             00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
          :             B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
          :             FB
531 02  97:           INTEGER
          :             00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
          :             B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
          :             AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
          :             40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
          :             B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
          :             68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
          :             92
630 30  26:           SEQUENCE {
632 03  21:             BIT STRING 0 unused bits
          :             1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
          :             09 E4 98 34
655 02   1:             INTEGER 55
          :             }
          :           }
          :         }
658 03 132:       BIT STRING 0 unused bits
          :         02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1
          :         E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0
          :         46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69
          :         B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22
          :         4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF
          :         D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21
          :         E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31
          :         4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0
          :         8F C5 1A
          :       }
793 A3  85:     [3] {
795 30  83:       SEQUENCE {
797 30  29:         SEQUENCE {
799 06   3:           OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29
14)
804 04  22:           OCTET STRING
          :             04 14 80 DF 59 88 BF EB 17 E1 AD 5E C6 40 A3 42
          :             E5 AC D3 B4 88 78
          :           }
828 30  34:         SEQUENCE {
830 06   3:           OBJECT IDENTIFIER authorityKeyIdentifier (2 5 29
35)



Prafullchandra & Schaad     Standards Track                    [Page 12]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


835 01   1:           BOOLEAN TRUE
838 04  24:           OCTET STRING
          :             30 16 80 14 6A 23 37 55 B9 FD 81 EA E8 4E D3 C9
          :             B7 09 E5 7B 06 E3 68 AA
          :           }
864 30  14:         SEQUENCE {
866 06   3:           OBJECT IDENTIFIER keyUsage (2 5 29 15)
871 01   1:           BOOLEAN TRUE
874 04   4:           OCTET STRING
          :             03 02 03 08
          :           }
          :         }
          :       }
          :     }
880 30  11:   SEQUENCE {
882 06   7:     OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)
891 05   0:     NULL
          :     }
893 03  48:   BIT STRING 0 unused bits
          :     30 2D 02 14 7C 6D D2 CA 1E 32 D1 30 2E 29 66 BC
          :     06 8B 60 C7 61 16 3B CA 02 15 00 8A 18 DD C1 83
          :     58 29 A2 8A 67 64 03 92 AB 02 CE 00 B5 94 6A
          :   }


   Step 2. End Entity/User generates a Diffie-Hellman key-pair using the
   parameters from the CA certificate.

   EE DH public key: SunJCE Diffie-Hellman Public Key:

   Y: 13 63 A1 85 04 8C 46 A8 88 EB F4 5E A8 93 74 AE
      FD AE 9E 96 27 12 65 C4 4C 07 06 3E 18 FE 94 B8
      A8 79 48 BD 2E 34 B6 47 CA 04 30 A1 EC 33 FD 1A
      0B 2D 9E 50 C9 78 0F AE 6A EC B5 6B 6A BE B2 5C
      DA B2 9F 78 2C B9 77 E2 79 2B 25 BF 2E 0B 59 4A
      93 4B F8 B3 EC 81 34 AE 97 47 52 E0 A8 29 98 EC
      D1 B0 CA 2B 6F 7A 8B DB 4E 8D A5 15 7E 7E AF 33
      62 09 9E 0F 11 44 8C C1 8D A2 11 9E 53 EF B2 E8

   EE DH private key:

   X: 32 CC BD B4 B7 7C 44 26 BB 3C 83 42 6E 7D 1B 00
      86 35 09 71 07 A0 A4 76 B8 DB 5F EC 00 CE 6F C3

   Step 3. Compute K and the signature.

   LeadingInfo: DER encoded Subject/Requestor DN (as in the generated
   Certificate Signing Request)



Prafullchandra & Schaad     Standards Track                    [Page 13]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


     30 4E 31 0B 30 09 06 03 55 04 06 13 02 55 53 31
     11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49
     6E 63 31 10 30 0E 06 03 55 04 0B 13 07 54 65 73
     74 69 6E 67 31 1A 30 18 06 03 55 04 03 13 11 50
     4B 49 58 20 45 78 61 6D 70 6C 65 20 55 73 65 72

   TrailingInfo: DER encoded Issuer/Recipient DN (from the certificate
   described in step 1)

     30 46 31 0B 30 09 06 03 55 04 06 13 02 55 53 31
     11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49
     6E 63 31 10 30 0E 06 03 55 04 0B 13 07 54 65 73
     74 69 6E 67 31 12 30 10 06 03 55 04 03 13 09 44
     48 20 54 65 73 74 43 41

   K:
     F4 D7 BB 6C C7 2D 21 7F 1C 38 F7 DA 74 2D 51 AD
     14 40 66 75

   TBS: the �text� for computing the SHA-1 HMAC.

   30 82 02 98 02 01 00 30 4E 31 0B 30 09 06 03 55
   04 06 13 02 55 53 31 11 30 0F 06 03 55 04 0A 13
   08 58 45 54 49 20 49 6E 63 31 10 30 0E 06 03 55
   04 0B 13 07 54 65 73 74 69 6E 67 31 1A 30 18 06
   03 55 04 03 13 11 50 4B 49 58 20 45 78 61 6D 70
   6C 65 20 55 73 65 72 30 82 02 41 30 82 01 B6 06
   07 2A 86 48 CE 3E 02 01 30 82 01 A9 02 81 81 00
   94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5
   A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5
   D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51
   63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B
   79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A
   F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32
   E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7
   B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27
   02 81 80 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87
   53 3F 90 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5
   0C 53 D4 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6
   1B 7F 57 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31
   7A 48 B6 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69
   D9 9B DE 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33
   51 C8 F1 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31
   15 26 48 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E
   DA D1 CD 02 21 00 E8 72 FA 96 F0 11 40 F5 F2 DC
   FD 3B 5D 78 94 B1 85 01 E5 69 37 21 F7 25 B9 BA
   71 4A FC 60 30 FB 02 61 00 A3 91 01 C0 A8 6E A4
   4D A0 56 FC 6C FE 1F A7 B0 CD 0F 94 87 0C 25 BE



Prafullchandra & Schaad     Standards Track                    [Page 14]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


   97 76 8D EB E5 A4 09 5D AB 83 CD 80 0B 35 67 7F
   0C 8E A7 31 98 32 85 39 40 9D 11 98 D8 DE B8 7F
   86 9B AF 8D 67 3D B6 76 B4 61 2F 21 E1 4B 0E 68
   FF 53 3E 87 DD D8 71 56 68 47 DC F7 20 63 4B 3C
   5F 78 71 83 E6 70 9E E2 92 30 1A 03 15 00 1C D5
   3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB 09 E4
   98 34 02 01 37 03 81 84 00 02 81 80 13 63 A1 85
   04 8C 46 A8 88 EB F4 5E A8 93 74 AE FD AE 9E 96
   27 12 65 C4 4C 07 06 3E 18 FE 94 B8 A8 79 48 BD
   2E 34 B6 47 CA 04 30 A1 EC 33 FD 1A 0B 2D 9E 50
   C9 78 0F AE 6A EC B5 6B 6A BE B2 5C DA B2 9F 78
   2C B9 77 E2 79 2B 25 BF 2E 0B 59 4A 93 4B F8 B3
   EC 81 34 AE 97 47 52 E0 A8 29 98 EC D1 B0 CA 2B
   6F 7A 8B DB 4E 8D A5 15 7E 7E AF 33 62 09 9E 0F
   11 44 8C C1 8D A2 11 9E 53 EF B2 E8


   Certification Request:

  0 30 793: SEQUENCE {
  4 30 664:   SEQUENCE {
  8 02   1:     INTEGER 0
 11 30  78:     SEQUENCE {
 13 31  11:       SET {
 15 30   9:         SEQUENCE {
 17 06   3:           OBJECT IDENTIFIER countryName (2 5 4 6)
 22 13   2:           PrintableString 'US'
          :           }
          :         }
 26 31  17:       SET {
 28 30  15:         SEQUENCE {
 30 06   3:           OBJECT IDENTIFIER organizationName (2 5 4 10)
 35 13   8:           PrintableString 'XETI Inc'
          :           }
          :         }
 45 31  16:       SET {
 47 30  14:         SEQUENCE {
 49 06   3:           OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
 54 13   7:           PrintableString 'Testing'
          :           }
          :         }
 63 31  26:       SET {
 65 30  24:         SEQUENCE {
 67 06   3:           OBJECT IDENTIFIER commonName (2 5 4 3)
 72 13  17:           PrintableString 'PKIX Example User'
          :           }
          :         }



Prafullchandra & Schaad     Standards Track                    [Page 15]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


          :       }
 91 30 577:     SEQUENCE {
 95 30 438:       SEQUENCE {
 99 06   7:         OBJECT IDENTIFIER dhPublicKey (1 2 840 10046 2 1)
108 30 425:         SEQUENCE {
112 02 129:           INTEGER
          :             00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
          :             C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
          :             F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
          :             51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
          :             5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
          :             8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
          :             32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
          :             D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
          :             27
244 02 128:           INTEGER
          :             26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
          :             06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
          :             64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
          :             86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
          :             4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
          :             47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
          :             39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
          :             95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
375 02  33:           INTEGER
          :             00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
          :             B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
          :             FB
410 02  97:           INTEGER
          :             00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
          :             B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
          :             AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
          :             40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
          :             B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
          :             68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
          :             92
509 30  26:           SEQUENCE {
511 03  21:             BIT STRING 0 unused bits
          :               1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E
DB
          :               09 E4 98 34
534 02   1:             INTEGER 55
          :             }
          :           }
          :         }
537 03 132:       BIT STRING 0 unused bits
          :         02 81 80 13 63 A1 85 04 8C 46 A8 88 EB F4 5E A8
          :         93 74 AE FD AE 9E 96 27 12 65 C4 4C 07 06 3E 18



Prafullchandra & Schaad     Standards Track                    [Page 16]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


          :         FE 94 B8 A8 79 48 BD 2E 34 B6 47 CA 04 30 A1 EC
          :         33 FD 1A 0B 2D 9E 50 C9 78 0F AE 6A EC B5 6B 6A
          :         BE B2 5C DA B2 9F 78 2C B9 77 E2 79 2B 25 BF 2E
          :         0B 59 4A 93 4B F8 B3 EC 81 34 AE 97 47 52 E0 A8
          :         29 98 EC D1 B0 CA 2B 6F 7A 8B DB 4E 8D A5 15 7E
          :         7E AF 33 62 09 9E 0F 11 44 8C C1 8D A2 11 9E 53
          :         EF B2 E8
          :       }
          :     }
672 30  12:   SEQUENCE {
674 06   8:     OBJECT IDENTIFIER dh-sig-hmac-sha1 (1 3 6 1 5 5 7 6 3)
684 05   0:     NULL
          :     }
686 03 109:   BIT STRING 0 unused bits
          :     30 6A 30 52 30 48 31 0B 30 09 06 03 55 04 06 13
          :     02 55 53 31 11 30 0F 06 03 55 04 0A 13 08 58 45
          :     54 49 20 49 6E 63 31 10 30 0E 06 03 55 04 0B 13
          :     07 54 65 73 74 69 6E 67 31 14 30 12 06 03 55 04
          :     03 13 0B 52 6F 6F 74 20 44 53 41 20 43 41 02 06
          :     00 DA 39 B6 E2 CB 04 14 1B 17 AD 4E 65 86 1A 6C
          :     7C 85 FA F7 95 DE 48 93 C5 9D C5 24
          :   }

   Signature verification requires CA�s private key, the CA certificate
   and the generated Certification Request.

   CA DH private key:

    x:  3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7
        52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D





















Prafullchandra & Schaad     Standards Track                    [Page 17]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


Appendix C.  Example of Discrete Log Signature

   Step 1. Generate a Diffie-Hellman Key with length of q being 256-
   bits.

   p:
     94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5
     A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5
     D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51
     63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B
     79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A
     F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32
     E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7
     B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27

   q:
     E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94 B1
     85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30 FB

   g:
     26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
     06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
     64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
     86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
     4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
     47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
     39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
     95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD

   j:
     A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7 B0
     CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D AB
     83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39 40
     9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76 B4
     61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56 68
     47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2 92

   y:
     5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1 E6 A7 01
     4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0 46 79 50
     A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69 B7 11 A1
     C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22 4D 0A 11
     6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF D8 59 92
     C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21 E1 AF 7A
     3A CF 20 0A B4 2C 69 5F CF 79 67 20 31 4D F2 C6
     ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0 8F C5 1A

   seed:



Prafullchandra & Schaad     Standards Track                    [Page 18]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


     1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
     09 E4 98 34

   C:
     00000037

   x:
     3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7
     52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D

   Step 2.  Form the value to be signed and hash with SHA1.  The result
   of the hash for this example is:
     5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6
     d4 21 e5 2c

   Step 3.  The hash value needs to be expanded since |q| = 256.  This
   is done by hashing the hash with SHA1 and appending it to the
   original hash.  The value after this step is:

     5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6
     d4 21 e5 2c 64 92 8b c9 5e 34 59 70 bd 62 40 ad
     6f 26 3b f7 1c a3 b2 cb

   Next the first 255 bits of this value are taken to be the resulting
   "hash" value.  Note in this case a shift of one bit right is done
   since the result is to be treated as an integer:

     2f d1 34 db 25 91 48 91 37 a6 7f 34 76 15 e8 e3
     6a 10 f2 96 32 49 45 e4 af 1a 2c b8 5e b1 20 56

   Step 4.  The signature value is computed.  In this case you get the
   values

   R:
     A1 B5 B4 90 01 34 6B A0 31 6A 73 F5 7D F6 5C 14
     43 52 D2 10 BF 86 58 87 F7 BC 6E 5A 77 FF C3 4B

   S:
     59 40 45 BC 6F 0D DC FF 9D 55 40 1E C4 9E 51 3D
     66 EF B2 FF 06 40 9A 39 68 75 81 F7 EC 9E BE A1

   The encoded signature values is then:

   30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73
   F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E
   5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D
   55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68
   75 81 F7 EC 9E BE A1



Prafullchandra & Schaad     Standards Track                    [Page 19]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


   Result:
     30 82 02 c2 30 82 02 67 02 01 00 30 1b 31 19 30
     17 06 03 55 04 03 13 10 49 45 54 46 20 50 4b 49
     58 20 53 41 4d 50 4c 45 30 82 02 41 30 82 01 b6
     06 07 2a 86 48 ce 3e 02 01 30 82 01 a9 02 81 81
     00 94 84 e0 45 6c 7f 69 51 62 3e 56 80 7c 68 e7
     c5 a9 9e 9e 74 74 94 ed 90 8c 1d c4 e1 4a 14 82
     f5 d2 94 0c 19 e3 b9 10 bb 11 b9 e5 a5 fb 8e 21
     51 63 02 86 aa 06 b8 21 36 b6 7f 36 df d1 d6 68
     5b 79 7c 1d 5a 14 75 1f 6a 93 75 93 ce bb 97 72
     8a f0 0f 23 9d 47 f6 d4 b3 c7 f0 f4 e6 f6 2b c2
     32 e1 89 67 be 7e 06 ae f8 d0 01 6b 8b 2a f5 02
     d7 b6 a8 63 94 83 b0 1b 31 7d 52 1a de e5 03 85
     27 02 81 80 26 a6 32 2c 5a 2b d4 33 2b 5c dc 06
     87 53 3f 90 06 61 50 38 3e d2 b9 7d 81 1c 12 10
     c5 0c 53 d4 64 d1 8e 30 07 08 8c dd 3f 0a 2f 2c
     d6 1b 7f 57 86 d0 da bb 6e 36 2a 18 e8 d3 bc 70
     31 7a 48 b6 4e 18 6e dd 1f 22 06 eb 3f ea d4 41
     69 d9 9b de 47 95 7a 72 91 d2 09 7f 49 5c 3b 03
     33 51 c8 f1 39 9a ff 04 d5 6e 7e 94 3d 03 b8 f6
     31 15 26 48 95 a8 5c de 47 88 b4 69 3a 00 a7 86
     9e da d1 cd 02 21 00 e8 72 fa 96 f0 11 40 f5 f2
     dc fd 3b 5d 78 94 b1 85 01 e5 69 37 21 f7 25 b9
     ba 71 4a fc 60 30 fb 02 61 00 a3 91 01 c0 a8 6e
     a4 4d a0 56 fc 6c fe 1f a7 b0 cd 0f 94 87 0c 25
     be 97 76 8d eb e5 a4 09 5d ab 83 cd 80 0b 35 67
     7f 0c 8e a7 31 98 32 85 39 40 9d 11 98 d8 de b8
     7f 86 9b af 8d 67 3d b6 76 b4 61 2f 21 e1 4b 0e
     68 ff 53 3e 87 dd d8 71 56 68 47 dc f7 20 63 4b
     3c 5f 78 71 83 e6 70 9e e2 92 30 1a 03 15 00 1c
     d5 3a 0d 17 82 6d 0a 81 75 81 46 10 8e 3e db 09
     e4 98 34 02 01 37 03 81 84 00 02 81 80 5f cf 39
     ad 62 cf 49 8e d1 ce 66 e2 b1 e6 a7 01 4d 05 c2
     77 c8 92 52 42 a9 05 a4 db e0 46 79 50 a3 fc 99
     3d 3d a6 9b a9 ad bc 62 1c 69 b7 11 a1 c0 2a f1
     85 28 f7 68 fe d6 8f 31 56 22 4d 0a 11 6e 72 3a
     02 af 0e 27 aa f9 ed ce 05 ef d8 59 92 c0 18 d7
     69 6e bd 70 b6 21 d1 77 39 21 e1 af 7a 3a cf 20
     0a b4 2c 69 5f cf 79 67 20 31 4d f2 c6 ed 23 bf
     c4 bb 1e d1 71 40 2c 07 d6 f0 8f c5 1a a0 00 30
     0c 06 08 2b 06 01 05 05 07 06 04 05 00 03 47 00
     30 44 02 20 54 d9 43 8d 0f 9d 42 03 d6 09 aa a1
     9a 3c 17 09 ae bd ee b3 d1 a0 00 db 7d 8c b8 e4
     56 e6 57 7b 02 20 44 89 b1 04 f5 40 2b 5f e7 9c
     f9 a4 97 50 0d ad c3 7a a4 2b b2 2d 5d 79 fb 38
     8a b4 df bb 88 bc





Prafullchandra & Schaad     Standards Track                    [Page 20]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


   Decoded Version of result:

  0 30  707: SEQUENCE {
  4 30  615:   SEQUENCE {
  8 02    1:     INTEGER 0
 11 30   27:     SEQUENCE {
 13 31   25:       SET {
 15 30   23:         SEQUENCE {
 17 06    3:           OBJECT IDENTIFIER commonName (2 5 4 3)
 22 13   16:           PrintableString 'IETF PKIX SAMPLE'
           :           }
           :         }
           :       }
 40 30  577:     SEQUENCE {
 44 30  438:       SEQUENCE {
 48 06    7:         OBJECT IDENTIFIER dhPublicNumber (1 2 840 10046 2
1)
 57 30  425:         SEQUENCE {
 61 02  129:           INTEGER
           :            00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
           :            C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
           :            F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
           :            51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
           :            5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
           :            8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
           :            32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
           :            D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
           :            27
193 02  128:           INTEGER
           :            26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
           :            06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
           :            64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
           :            86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
           :            4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
           :            47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
           :            39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
           :            95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
324 02   33:           INTEGER
           :            00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
           :            B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
           :            FB
359 02   97:           INTEGER
           :            00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
           :            B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
           :            AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
           :            40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
           :            B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
           :            68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2



Prafullchandra & Schaad     Standards Track                    [Page 21]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


           :            92
458 30   26:           SEQUENCE {
460 03   21:             BIT STRING 0 unused bits
           :            1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
           :            09 E4 98 34
483 02    1:             INTEGER 55
           :             }
           :           }
           :         }
486 03  132:       BIT STRING 0 unused bits
           :         02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1
           :         E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0
           :         46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69
           :         B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22
           :         4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF
           :         D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21
           :         E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31
           :         4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0
           :         8F C5 1A
           :       }
621 A0    0:     [0]
           :     }
623 30   12:   SEQUENCE {
625 06    8:     OBJECT IDENTIFIER '1 3 6 1 5 5 7 6 4'
635 05    0:     NULL
           :     }
637 03   72:   BIT STRING 0 unused bits
           :     30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73
           :     F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E
           :     5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D
           :     55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68
           :     75 81 F7 EC 9E BE A1
           :   }


















Prafullchandra & Schaad     Standards Track                    [Page 22]

RFC 2875     Diffie-Hellman Proof-of-Possession Algorithms     July 2000


Full Copyright Statement

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.



















Prafullchandra & Schaad     Standards Track                    [Page 23]