💾 Archived View for gmi.noulin.net › rfc › rfc2106.gmi captured on 2023-12-28 at 21:42:32. Gemini links have been rewritten to link to archived content

View Raw

More Information

⬅️ Previous capture (2021-12-05)

-=-=-=-=-=-=-

Obsoleted by:

RFC2114

Keywords: DLSRAP, NetBios, DLSW







Network Working Group                                          S. Chiang
Request for Comments: 2106                                        J. Lee
Category: Informational                              Cisco Systems, Inc.
                                                               H. Yasuda
                                               Mitsubishi Electric Corp.
                                                           February 1997


               Data Link Switching Remote Access Protocol

Status of this Memo

   This memo provides information for the Internet community.  This memo
   does not specify an Internet standard of any kind.  Distribution of
   this memo is unlimited.

Abstract

   This memo describes the Data Link Switching Remote Access Protocol
   that is used between workstations and routers to transport SNA/
   NetBIOS traffic over TCP sessions. Any questions or comments should
   be sent to drap@cisco.com.

1.  Introduction

   Since the Data Link Switching Protocol, RFC 1795, was published, some
   software vendors have begun implementing DLSw on workstations. The
   implementation of DLSw on a large number of workstations raises
   several important issues that must be addressed. Scalability is the
   major concern. For example, the number of TCP sessions to the DLSw
   router increases in direct proportion to the number of workstations
   added. Another concern is efficiency. Since DLSw is a switch-to-
   switch protocol, it is not efficient when implemented on
   workstations.

   DRAP addresses the above issues. It introduces a hierarchical
   structure to resolve the scalability problems. All workstations are
   clients to the router (server) rather than peers to the router. This
   creates a client/server model. It also provides a more efficient
   protocol between the workstation (client) and the router (server).











Chiang, et. al.              Informational                      [Page 1]

RFC 2106                         DLSRAP                    February 1997


2.  Overview

2.1.  DRAP Client/Server Model

      +-----------+              +-----------+       +---------+
      | Mainframe |              | IP Router +- ppp -+ DLSw    |
      +--+--------+              +-----+-----+       | Work    |
         |                             |             | Station |
         |                             |             +---------+
      +--+--+      +-------------+     |
      | FEP +- TR -+ DLSw Router +-- IP Backbone
      +-----+      +-------------+     |
                                       |
                                       |
                                 +-----------+       +---------+
                                 | IP Router +- ppp -+ DLSw    |
                                 +-----+-----+       | Work    |
                                                     | Station |
                                                     +---------+

                           |         DLSw Session          |
                           +-------------------------------+
  Figure 2-1. Running DLSw on a large number of workstations creates a
                         scalability problem.

   Figure 2-1 shows a typical DLSw implementation on a workstation. The
   workstations are connected to the central site DLSw router over the
   IP network.  As the network grows, scalability will become an issue
   as the number of TCP sessions increases due to the growing number of
   workstations.





















Chiang, et. al.              Informational                      [Page 2]

RFC 2106                         DLSRAP                    February 1997


                                  +-----------+       +-------+
       +-----------+              | DLSw/DRAP |       | DRAP  |
       | Mainframe |              |   Router  +- ppp -+ Client|
       +--+--------+              +-----+-----+       +-------+
          |                             |
          |                             |
       +--+--+      +-------------+     |
       | FEP +- TR -+ DLSw Router +-- IP Backbone
       +-----+      +-------------+     |
                                        |
                                        |
                                  +-----------+       +-------+
                                  | DLSw/DRAP |       | DRAP  |
                                  |   Router  +- ppp -+ Client|
                                  +-----+-----+       +-------+

                         | DLSw Session |  | DRAP Session |
                         +--------------+  +--------------+
Figure 2-2. DLSw Remote Access Protocol solves the scalability problem.

   In a large network, DRAP addresses the scalability problem by
   significantly reducing the number of peers that connect to the
   central site router. The workstations (DRAP client) and the router
   (DRAP server) behave in a Client/Server relationship. Workstations
   are attached to a DRAP server. A DRAP server has a single peer
   connection to the central site router.

2.2.  Dynamic Address Resolution

   In a DLSw network, each workstation needs a MAC address to
   communicate with a FEP attached to a LAN. When DLSw is implemented on
   a workstation, it does not always have a MAC address defined. For
   example, when a workstation connects to a router through a modem via
   PPP, it only consists of an IP address. In this case, the user must
   define a virtual MAC address. This is administratively intensive
   since each workstation must have an unique MAC address.

   DRAP uses the Dynamic Address Resolution protocol to solve this
   problem. The Dynamic Address Resolution protocol permits the server
   to dynamically assign a MAC address to a client without complex
   configuration.

   For a client to initiate a session to a server, the workstation sends
   a direct request to the server. The request contains the destination
   MAC address and the destination SAP. The workstation can either
   specify its own MAC address, or request the server to assign one to
   it. The server's IP address must be pre-configured on the
   workstation. If IP addresses are configured for multiple servers at a



Chiang, et. al.              Informational                      [Page 3]

RFC 2106                         DLSRAP                    February 1997


   workstation, the request can be sent to these servers and the first
   one to respond will be used.

   For a server to initiate a session to a client, the server sends a
   directed request to the workstation. The workstation must pre-
   register its MAC address at the server. This can be done either by
   configuration on the server or registration at the server (both MAC
   addresses and IP addresses will be registered).

2.3.  TCP Connection

   The transport used between the client and the server is TCP. Before a
   TCP session is established between the client and the server, no
   message can be sent. The default parameters associated with the TCP
   connections between the client and the server are as follows:

      Socket Family     AF_INET        (Internet protocols)
      Socket Type       SOCK_STREAM    (stream socket)
      Port Number       1973

   There is only one TCP connection between the client and the server.
   It is used for both read and write operations.

3.  DRAP Format

3.1.  General Frame Format

   The General format of the DRAP frame is as follows:

             +-------------+-----------+-----------+
             | DRAP Header | DRAP Data | User Data |
             +-------------+-----------+-----------+
                     Figure 3-1. DRAP Frame Format

   The DRAP protocol is contained in the DRAP header, which is common to
   all frames passed between the DRAP client and the server. This header
   is 4 bytes long. The next section will explain the details.

   The next part is the DRAP Data. The structure and the size are based
   on the type of messages carried in the DRAP frame. The DRAP data is
   used to process the frame, but it is optional.

   The third part of the frame is the user data, which is sent by the
   local system to the remote system. The size of this block is variable
   and is included in the frame only when there is data to be sent to
   the remote system.





Chiang, et. al.              Informational                      [Page 4]

RFC 2106                         DLSRAP                    February 1997


3.2.  Header Format

   The DRAP header is used to identify the message type and the length
   of the frame. This is a general purpose header used for each frame
   that is passed between the DRAP server and the client. More
   information is needed for frames like CAN_U_REACH and I_CAN_REACH,
   therefore, it is passed to the peer as DRAP data. The structure of
   the DRAP data depends on the type of frames, and will be discussed in
   detail in later sections.

   The DRAP Header is given below:

             +-------------------------------------------+
             | DRAP Packet Header (Each row is one byte) |
             +===========================================+
           0 | Protocol ID / Version Number              |
             +-------------------------------------------+
           1 | Message Type                              |
             +-------------------------------------------+
           2 | Packet Length                             |
             + - - - - - - - - - - - - - - - - - - - - - +
           3 |                                           |
             +-------------------------------------------+
                     Figure 3-2. DRAP Header Format

   o The Protocol ID uses the first 4 bits of this field and is set to
     "1000".

   o The Version Number uses the next 4 bits in this field and is set
     to "0001".

   o The message type is the DRAP message type.

   o The Total Packet length is the length of the packet including the
     DRAP header, DRAP data and User Data. The minimum size of the
     packet is 4, which is the length of the header.

3.3.  DRAP Messages

   Most of the Drap frames are based on the existing DLSw frames and
   have the same names. The information in the corresponding DRAP and
   DLSw frames may differ; but the functionalities are the same. Thus
   the DLSw State Machine is used to handle these DRAP frames. Some new
   DRAP frames were created to handle special DRAP functions. For
   example, the new DRAP frames, I_CANNOT_REACH and START_DL_FAILED
   provide negative acknowledgment. The DLSw frames not needed for DRAP,
   are dropped.




Chiang, et. al.              Informational                      [Page 5]

RFC 2106                         DLSRAP                    February 1997


   The following table lists and describes all available DRAP messages:

   DRAP Frame Name     Code  Function
   ---------------     ----  --------
   CAN_U_REACH         0x01  Find if the station given is reachable
   I_CAN_REACH         0x02  Positive response to CAN_U_REACH
   I_CANNOT_REACH      0x03  Negative response to CAN_U_REACH
   START_DL            0x04  Setup session for given addresses
   DL_STARTED          0x05  Session Started
   START_DL_FAILED     0x06  Session Start failed
   XID_FRAME           0x07  XID Frame
   CONTACT_STN         0x08  Contact destination to establish SABME
   STN_CONTACTED       0x09  Station contacted - SABME mode set
   DATA_FRAME          0x0A  Connectionless Data Frame for a link
   INFO_FRAME          0x0B  Connection oriented I-Frame
   HALT_DL             0x0C  Halt Data Link session
   HALT_DL_NOACK       0x0D  Halt Data Link session without ack
   DL_HALTED           0x0E  Session Halted
   FCM_FRAME           0x0F  Data Link Session Flow Control Message
   DGRM_FRAME          0x11  Connectionless Datagram Frame for a circuit
   CAP_XCHANGE         0x12  Capabilities Exchange Message
   CLOSE_PEER_REQUEST  0x13  Disconnect Peer Connection Request
   CLOSE_PEER_RESPONSE 0x14  Disconnect Peer Connection Response
   PEER_TEST_REQ       0x1D  Peer keepalive test request
   PEER_TEST_RSP       0x1E  Peer keepalive response

                         Table 3-1. DRAP Frames

3.4.  DRAP Data formats

   The DRAP data is used to carry information required for each DRAP
   frame. This information is used by the Server or the Client and it
   does not contain any user data. The DRAP data frame types are listed
   in the following sections. Please note that the sender should set the
   reserved fields to zero and the receiver should ignore these fields.

3.4.1.  CAN_U_REACH, I_CAN_REACH, and I_CANNOT_REACH Frames

   These frame types are used to locate resources in a network. A
   CAN_U_REACH frame is sent to the server to determine if the resource
   is reachable. The server responds with an I_CAN_REACH frame if it can
   reach the workstation identified in the CAN_U_REACH frame, or with an
   I_CANNOT_REACH if the station is not reachable. The server should not
   send the CAN_U_REACH frame to the clients. When a server receives an
   explorer whose destination is a known client, the server should
   respond to it directly.





Chiang, et. al.              Informational                      [Page 6]

RFC 2106                         DLSRAP                    February 1997


           +---------------+-----------------------+
           | Field Name    | Information           |
           +---------------+-----------------------+
           | Message Type  | 0x01, 0x02, or 0x03   |
           +---------------+-----------------------+
           | Packet Length | 0x0C                  |
           +---------------+-----------------------+
    Figure 3-3. CAN_U_REACH, I_CAN_REACH, and I_CANNOT_REACH Header

             +-----------------------------------+
             | Field Name (Each row is one byte) |
             +===================================+
           0 | Target MAC Address                |
             + - - - - - - - - - - - - - - - - - +
           1 |                                   |
             + - - - - - - - - - - - - - - - - - +
           2 |                                   |
             + - - - - - - - - - - - - - - - - - +
           3 |                                   |
             + - - - - - - - - - - - - - - - - - +
           4 |                                   |
             + - - - - - - - - - - - - - - - - - +
           5 |                                   |
             +-----------------------------------+
           6 | Source SAP                        |
             +-----------------------------------+
           7 | Reserved                          |
             +-----------------------------------+
     Figure 3-4. CAN_U_REACH, I_CAN_REACH, and I_CANNOT_REACH Data

   The MAC Address field carries the MAC address of the target
   workstation that is being searched. This is a six-byte MAC Address
   field. The same MAC Address is returned in the I_CAN_REACH and the
   I_CANNOT_REACH frames.

   Byte 6 is the source SAP. The destination SAP is set to zero when an
   explorer frame is sent to the network.

   If the sender did not receive a positive acknowledgment within a
   recommended threshold value of 60 seconds, the destination is
   considered not reachable.

3.4.2.  START_DL, DL_STARTED, and START_DL_FAILED Frames

   These frame types are used by DRAP to establish a link station
   (circuit). The START_DL frame is sent directly to the server that
   responds to the CAN_U_REACH frame. When the server receives this
   frame, it establishes a link station with the source and destination



Chiang, et. al.              Informational                      [Page 7]

RFC 2106                         DLSRAP                    February 1997


   addresses and saps provided in the START_DL frame. If the circuit
   establishment is successful, a DL_STARTED frame is sent back as a
   response. A failure will result in a START_DL_FAILED response. The
   server can also send START_DL frames to clients, to establish
   circuits.

           +---------------+-----------------------+
           | Field Name    | Information           |
           +---------------+-----------------------+
           | Message Type  | 0x04, 0x05, or 0x06   |
           +---------------+-----------------------+
           | Packet Length | 0x18                  |
           +---------------+-----------------------+
      Figure 3-5. START_DL, DL_STARTED, and START_DL_FAILED Header





































Chiang, et. al.              Informational                      [Page 8]

RFC 2106                         DLSRAP                    February 1997


             +-----------------------------------+
             | Field Name (Each row is one byte) |
             +===================================+
           0 | Host MAC Address                  |
             + - - - - - - - - - - - - - - - - - +
           1 |                                   |
             + - - - - - - - - - - - - - - - - - +
           2 |                                   |
             + - - - - - - - - - - - - - - - - - +
           3 |                                   |
             + - - - - - - - - - - - - - - - - - +
           4 |                                   |
             + - - - - - - - - - - - - - - - - - +
           5 |                                   |
             +-----------------------------------+
           6 | Host SAP                          |
             +-----------------------------------+
           7 | Client SAP                        |
             +-----------------------------------+
           8 | Origin Session ID                 |
             +-----------------------------------+
           9 |                                   |
             + - - - - - - - - - - - - - - - - - +
           10|                                   |
             + - - - - - - - - - - - - - - - - - +
           11|                                   |
             +-----------------------------------+
           12| Target Session ID                 |
             + - - - - - - - - - - - - - - - - - +
           13|                                   |
             + - - - - - - - - - - - - - - - - - +
           14|                                   |
             + - - - - - - - - - - - - - - - - - +
           15|                                   |
             +-----------------------------------+
           16| Largest Frame Size                |
             +-----------------------------------+
           17| Initial Window size               |
             +-----------------------------------+
           18| Reserved                          |
             + - - - - - - - - - - - - - - - - - +
           19|                                   |
             +-----------------------------------+
       Figure 3-6. START_DL, DL_STARTED, and START_DL_FAILED Data

   The Host MAC address is the address of the target station if the
   session is initiated from the client, or it is the address of the
   originating station if the session is initiated from the server.



Chiang, et. al.              Informational                      [Page 9]

RFC 2106                         DLSRAP                    February 1997


   The next two fields are the Host and Client SAPs. Each is one byte
   long. The Host SAP is the SAP used by the station with the Host MAC
   address. The Client SAP is the SAP used by the client.

   The Origin Session ID, is the ID of the originating station that
   initiates the circuit. The originating station uses this ID to
   identify the newly created circuit. Before the START_DL frame is sent
   to the target station, the originating station sets up a control
   block for the circuit. This link station information is set because
   DRAP does not use a three-way handshake for link station
   establishment. In the DL_STARTED and the START_DL_FAILED messages,
   the Origin Session ID is returned as received in the START_DL frame.
   The Target Session ID is set by the target station and returned in
   the DL_STARTED message.

   The Target Session ID is not valid for the START_DL and the
   START_DL_FAILED frame, and should be treated as Reserved fields. In
   the DL_STARTED frame, it is the session ID that is used to set up
   this circuit by the target station.

   The Largest Frame Size field is used to indicate the maximum frame
   size that can be used by the client. It is valid only when it is set
   by the server. The Largest Frame Size field must be set to zero when
   a frame is sent by the client. Both START_DL and DL_STARTED use the
   Largest Frame Size field and only its rightmost 6 bits are used.  The
   format is defined in the IEEE 802.1D Standard, Annex C, Largest Frame
   Bits (LF). Bit 3 to bit 5 are base bits. Bit 0 to bit 2 are extended
   bits. The Largest Frame Size field is not used in the START_DL_FAILED
   frame and must be set to zero.

           bit   7    6    5    4    3    2    1    0
                 r    r    b    b    b    e    e    e
                     Figure 3-7. Largest Frame Size

   Please note that if the client is a PU 2.1 node, the client should
   use the maximum I-frame size negotiated in the XID3 exchange.

   The Initial window size in the START_DL frame gives the receive
   window size on the originating side, and the target DRAP station
   returns its receive window size in the DL_STARTED frame. The field is
   reserved in the START_DL_FAILED frame. The usage of the window size
   is the same as the one used in DLSw.  Please refer to RFC 1795 for
   details.

   The last two bits are reserved for future use. They must be set to
   zero by the sender and ignored by the receiver.





Chiang, et. al.              Informational                     [Page 10]

RFC 2106                         DLSRAP                    February 1997


   If the sender of the START_DL frame did not receive a START_DL_FAILED
   frame within a recommended threshold value of 60 seconds, the
   connection is considered unsuccessful.

3.4.3.  HALT_DL, HALT_DL_NOACK, and DL_HALTED Frames

   These frame types are used by DRAP to disconnect a link station. A
   HALT_DL frame is sent directly to the remote workstation to indicate
   that the sender wishes to disconnect. When the receiver receives this
   frame, it tears down the session that is associated with the Original
   Session ID and the Target Session ID provided in the HALT_DL frame.
   The receiver should respond with the DL_HALTED frame. The DL_HALTED
   frame should use the same Session ID values as the received HALT_DL
   message without swapping them. The HALT_DL_NOACK frame is used when
   the response is not required.

           +---------------+-----------------------+
           | Field Name    | Information           |
           +---------------+-----------------------+
           | Message Type  | 0x0C, 0x0D, or 0x0E   |
           +---------------+-----------------------+
           | Packet Length | 0x10                  |
           +---------------+-----------------------+
        Figure 3-8. HALT_DL, HALT_DL_NOACK, and DL_HALTED Header



























Chiang, et. al.              Informational                     [Page 11]

RFC 2106                         DLSRAP                    February 1997


             +-----------------------------------+
             | Field Name (Each row is one byte) |
             +===================================+
           0 | Sender Session ID                 |
             + - - - - - - - - - - - - - - - - - +
           1 |                                   |
             + - - - - - - - - - - - - - - - - - +
           2 |                                   |
             + - - - - - - - - - - - - - - - - - +
           3 |                                   |
             +-----------------------------------+
           4 | Receiver Session ID               |
             + - - - - - - - - - - - - - - - - - +
           5 |                                   |
             + - - - - - - - - - - - - - - - - - +
           6 |                                   |
             + - - - - - - - - - - - - - - - - - +
           7 |                                   |
             +-----------------------------------+
           8 | Reserved                          |
             + - - - - - - - - - - - - - - - - - +
           9 |                                   |
             + - - - - - - - - - - - - - - - - - +
           10|                                   |
             + - - - - - - - - - - - - - - - - - +
           11|                                   |
             +-----------------------------------+
       Figure 3-9. START_DL, DL_STARTED, and START_DL_FAILED Data

3.4.4.  XID_FRAME, CONTACT_STN, STN_CONTACTED, INFO_FRAME, FCM_FRAME,
        and DGRM_FRAME

   These frame types are used to carry the end-to-end data or establish
   a circuit. The Destination Session ID is the Session ID created in
   the START_DL frame or the DL_STARTED frame by the receiver. The usage
   of the flow control flag is the same as the one used in DLSw.  Please
   refer to RFC 1795 for details.

           +---------------+----------------------------+
           | Field Name    | Information                |
           +---------------+----------------------------+
           | Message Type  | Based on Message type      |
           +---------------+----------------------------+
           | Packet Length | 0x0C + length of user data |
           +---------------+----------------------------+
                    Figure 3-10. Generic DRAP Header





Chiang, et. al.              Informational                     [Page 12]

RFC 2106                         DLSRAP                    February 1997


             +-----------------------------------+
             | Field Name (Each row is one byte) |
             +===================================+
           0 | Destination Session ID            |
             + - - - - - - - - - - - - - - - - - +
           1 |                                   |
             + - - - - - - - - - - - - - - - - - +
           2 |                                   |
             + - - - - - - - - - - - - - - - - - +
           3 |                                   |
             +-----------------------------------+
           4 | Flow Control Flags                |
             +-----------------------------------+
           5 | Reserved                          |
             + - - - - - - - - - - - - - - - - - +
           6 |                                   |
             + - - - - - - - - - - - - - - - - - +
           7 |                                   |
             +-----------------------------------+
                 Figure 3-11. Generic DRAP Data Format

3.4.5.  DATA_FRAME

   This frame type is used to send connectionless SNA and NetBIOS
   Datagram (UI) frames that do not have a link station associated with
   the source and destination MAC/SAP pair. The difference between
   DGRM_FRAME and DATA_FRAME is that DGRM_FRAME is used to send UI
   frames received for stations that have a link station opened, whereas
   DATA_FRAME is used for frames with no link station established.

           +---------------+-----------------------------+
           | Field Name    | Information                 |
           +---------------+-----------------------------+
           | Message Type  | 0x0A                        |
           +---------------+-----------------------------+
           | Packet Length | 0x10 + Length of user data  |
           +---------------+-----------------------------+
                     Figure 3-12. DATA_FRAME Header













Chiang, et. al.              Informational                     [Page 13]

RFC 2106                         DLSRAP                    February 1997


             +-----------------------------------+
             | Field Name (Each row is one byte) |
             +===================================+
           0 | Host MAC Address                  |
             + - - - - - - - - - - - - - - - - - +
           1 |                                   |
             + - - - - - - - - - - - - - - - - - +
           2 |                                   |
             + - - - - - - - - - - - - - - - - - +
           3 |                                   |
             + - - - - - - - - - - - - - - - - - +
           4 |                                   |
             + - - - - - - - - - - - - - - - - - +
           5 |                                   |
             +-----------------------------------+
           6 | Host SAP                          |
             +-----------------------------------+
           7 | Client SAP                        |
             +-----------------------------------+
           8 | Broadcast Type                    |
             +-----------------------------------+
           9 | Reserved                          |
             + - - - - - - - - - - - - - - - - - +
           10|                                   |
             + - - - - - - - - - - - - - - - - - +
           11|                                   |
             +-----------------------------------+
                  Figure 3-13. DATA_FRAME Data Format

   The definition of the first 8 bytes is the same as the START_DL
   frame. The Broadcast Type field indicates the type of broadcast
   frames in use; Single Route Broadcast, All Route Broadcast, or
   Directed. The target side will use the same broadcast type. In the
   case of Directed frame, if the RIF information is known, the target
   peer can send a directed frame. If not, a Single Route Broadcast
   frame is sent.

3.4.6.  CAP_XCHANGE Frame

   In DRAP, the capability exchange frame is used to exchange the
   client's information, such as its MAC address, with the server. If a
   DRAP client has its own MAC address defined, it should put it in the
   MAC address field. Otherwise, that field must be set to zero.

   When the DRAP server receives the CAP_XCHANGE frame, it should cache
   the MAC address if it is non zero. The DRAP server also verifies that
   the MAC address is unique. The server should return a CAP_XCHANGE
   response frame with the MAC address supplied by the client if the MAC



Chiang, et. al.              Informational                     [Page 14]

RFC 2106                         DLSRAP                    February 1997


   address is accepted. If a client does not have its own MAC address,
   the server should assign a MAC address to the client and put that
   address in the CAP_XCHANGE command frame.

   A client should record the new MAC address assigned by the server and
   return a response with the assigned MAC address. If the client cannot
   accept the assigned MAC address, another CAP_XCHANGE command with the
   MAC address field set to zero should be sent to the server. The
   server should allocate a new MAC address for this client.

   During the capability exchange, both the client and the server can
   send command frames. The process stops when either side sends a
   CAP_XCHANGE response frame. When the response frame is sent, the MAC
   address in the CAP_XCHANGE frame should be the same as the one in the
   previous received command. The sender of the CAP_XCHANGE response
   agrees to use the MAC address defined in the previous command.

   The number of CAP_XCHANGE frames that need to be exchanged is
   determined by the client and the server independently. When the
   number of exchange frames has exceeded the pre-defined number set by
   either the server or the client, the session should be brought down.

   The flag is used to show the capability of the sender. The following
   list shows the valid flags:

   0x01 NetBIOS support. If a client sets this bit on, the server will
        pass all NetBIOS explorers to this client. If this bit is not
        set, only SNA traffic will be sent to this client.

   0x02 TCP Listen Mode support. If a client supports TCP listen mode,
        the server will keep the client's MAC and IP addresses even
        after the TCP session is down. The cached information will be
        used for server to connect out. If a client does not support
        TCP listen mode, the cache will be deleted as soon as the TCP
        session is down.

   0x04 Command/Response. If this bit is set, it is a command,
        otherwise, it is a response.

   The values 0x01 and 0x02 are used only by the client. When a server
   sends the command/response to a client, the server does not return
   these values.

   Starting with the Reserved field, implementors can optionally
   implement the Capability Exchange Control Vector. Each Capability
   Exchange Control Vector consists of three fields: Length (1 byte),
   Type (1 byte), and Data (Length - 2 bytes). Two types of Control
   Vectors are defined: SAP_LIST and VENDOR_CODE (described below). To



Chiang, et. al.              Informational                     [Page 15]

RFC 2106                         DLSRAP                    February 1997


   ensure compatibility, implementors should ignore the unknown Control
   Vectors instead of treating them as errors.

   0x01 SAP_LIST. Length: 2+n bytes, where n ranges from 1 to 16.
      This control vector lists the SAPs that the client can support.
      The maximum number of SAPs a client can define is 16. Therefore,
      the length of this Control Vector ranges from 3 to 18. If the
      SAP_LIST is not specified in the capability exchange, the server
      assumes that the client can support all the SAP values. For
      example, if a client can only support SAP 4 and 8, then the
      following Control Vectors should be sent: "0x04, 0x01, 0x04,
      0x08". The first byte indicates the length of 4. The second byte
      indicates the control vector type of SAP_LIST. The last two bytes
      indicate the supported SAP values; 0x04 and 0x08. This Control
      Vector is used only by the client. If the server accepts this
      Control Vector, it must return the same Control Vector to the
      client.

   0x02 VENDOR_CODE. Length: 6 bytes.
      Each vendor is assigned a vendor code that identifies the vendor.
      This Control Vector does not require a response.

   After the receiver responds to a Control Vector, if the capability
   exchange is not done, the sender does not have to send the same
   Control Vector again.

           +---------------+-----------------------+
           | Field Name    | Information           |
           +---------------+-----------------------+
           | Message Type  | 0x12                  |
           +---------------+-----------------------+
           | Packet Length | 0x1C                  |
           +---------------+-----------------------+
                    Figure 3-14. CAP_XCHANGE Header

















Chiang, et. al.              Informational                     [Page 16]

RFC 2106                         DLSRAP                    February 1997


             +-----------------------------------+
             | Field Name (Each row is one byte) |
             +===================================+
           0 | MAC Address                       |
             + - - - - - - - - - - - - - - - - - +
           1 |                                   |
             + - - - - - - - - - - - - - - - - - +
           2 |                                   |
             + - - - - - - - - - - - - - - - - - +
           3 |                                   |
             + - - - - - - - - - - - - - - - - - +
           4 |                                   |
             + - - - - - - - - - - - - - - - - - +
           5 |                                   |
             +-----------------------------------+
           6 | Flag                              |
             +-----------------------------------+
           7 | Reserved                          |
             +-----------------------------------+
                  Figure 3-15. CAP_XCHANGE Data Format

3.4.7.  CLOSE_PEER_REQ Frames

   This frame is used for peer connection management and contains a
   reason code field. The following list describes the valid reason
   codes:

   0x01 System shutdown. This indicates shutdown in progress.

   0x02 Suspend. This code is used when there is no traffic between the
      server and the client, and the server or the client wishes to
      suspend the TCP session. When the TCP session is suspended, all
      circuits should remain intact. The TCP session should be re-
      established when new user data needs to be sent. When the TCP
      session is re-established, there is no need to send the
      CAP_XCHANGE frame again.

   0x03 No MAC address available. This code is sent by the server when
      there is no MAC address is available from the MAC address pool.

           +---------------+-----------------------+
           | Field Name    | Information           |
           +---------------+-----------------------+
           | Message Type  | 0x13                  |
           +---------------+-----------------------+
           | Packet Length | 0x08                  |
           +---------------+-----------------------+
                   Figure 3-16. CLOSE_PEER_REQ Header



Chiang, et. al.              Informational                     [Page 17]

RFC 2106                         DLSRAP                    February 1997


             +-----------------------------------+
             | Field Name (Each row is one byte) |
             +===================================+
           0 | Reason Code                       |
             +-----------------------------------+
           1 | Reserved                          |
             + - - - - - - - - - - - - - - - - - +
           2 |                                   |
             + - - - - - - - - - - - - - - - - - +
           3 |                                   |
             +-----------------------------------+
                Figure 3-17. CLOSE_PEER_REQ Data Format

3.4.8.  CLOSE_PEER_RSP, PEER_TEST_REQ, and PEER_TEST_RSP Frames

   These three frames are used for peer connection management. There is
   no data associated with them.

   o CLOSE_PEER_RSP
     CLOSE_PEER_RSP is the response for CLOSE_PEER_REQ.

   o PEER_TEST_REQ and PEER_TEST_RSP
     PEER_TEST_REQ and PEER_TEST_RSP are used for peer level keepalive.
     Implementing PEER_TEST_REQ is optional, but PEER_TEST_RSP must be
     implemented to respond to the PEER_TEST_REQ frame. When a
     PEER_TEST_REQ frame is sent to the remote station, the sender
     expects to receive the PEER_TEST_RSP frame in a predefined time
     interval (the recommended value is 60 seconds). If the
     PEER_TEST_RSP frame is not received in the predefined time
     interval, the sender can send the PEER_TEST_REQ frame again. If a
     predefined number of PEER_TEST_REQ frames is sent to the remote
     station, but no PEER_TEST_RSP frame is received (the recommended
     number is 3), the sender should close the TCP session with this
     remote station and terminate all associated circuits.


           +---------------+-----------------------+
           | Field Name    | Information           |
           +---------------+-----------------------+
           | Message Type  | 0x14, 0x1D, or 0x1E   |
           +---------------+-----------------------+
           | Packet Length | 0x04                  |
           +---------------+-----------------------+
   Figure 3-18. CLOSE_PEER_RSP, PEER_TEST_REQ, and PEER_TEST_RSP DRAP







Chiang, et. al.              Informational                     [Page 18]

RFC 2106                         DLSRAP                    February 1997


4.  References

   [1] Wells, L., Chair, and A. Bartky, Editor, "DLSw: Switch-to-Switch
       Protocol", RFC 1795, October 1993.

   [2] IEEE 802.1D Standard.

Authors' Addresses

   Steve T. Chiang
   InterWorks Business Unit
   Cisco Systems, Inc.
   170 Tasman Drive
   San Jose, CA 95134

   Phone: (408) 526-5189
   EMail: schiang@cisco.com


   Joseph S. Lee
   InterWorks Business Unit
   Cisco Systems, Inc.
   170 Tasman Drive
   San Jose, CA 95134

   Phone: (408) 526-5232
   EMail: jolee@cisco.com


   Hideaki Yasuda
   System Product Center
   Network Products Department
   Network Software Products Section B
   Mitsubishi Electric Corp.
   Information Systems Engineering Center
   325, Kamimachiya Kamakura Kanagawa 247, Japan

   Phone: +81-467-47-2120
   EMail: yasuda@eme068.cow.melco.co.jp












Chiang, et. al.              Informational                     [Page 19]