đŸ’Ÿ Archived View for gmi.noulin.net â€ș man â€ș man2 â€ș userfaultfd.2.gmi captured on 2023-12-28 at 16:30:39. Gemini links have been rewritten to link to archived content

View Raw

More Information

âŹ…ïž Previous capture (2022-06-12)

-=-=-=-=-=-=-

USERFAULTFD(2)                                                          Linux Programmer's Manual                                                         USERFAULTFD(2)

NAME
       userfaultfd - create a file descriptor for handling page faults in user space

SYNOPSIS
       #include <fcntl.h>            /* Definition of O_* constants */
       #include <sys/syscall.h>      /* Definition of SYS_* constants */
       #include <unistd.h>

       int syscall(SYS_userfaultfd, int flags);

       Note: glibc provides no wrapper for userfaultfd(), necessitating the use of syscall(2).

DESCRIPTION
       userfaultfd()  creates a new userfaultfd object that can be used for delegation of page-fault handling to a user-space application, and returns a file descriptor
       that refers to the new object.  The new userfaultfd object is configured using ioctl(2).

       Once the userfaultfd object is configured, the application can use read(2) to receive userfaultfd notifications.  The reads from userfaultfd may be  blocking  or
       non-blocking, depending on the value of flags used for the creation of the userfaultfd or subsequent calls to fcntl(2).

       The following values may be bitwise ORed in flags to change the behavior of userfaultfd():

       O_CLOEXEC
              Enable the close-on-exec flag for the new userfaultfd file descriptor.  See the description of the O_CLOEXEC flag in open(2).

       O_NONBLOCK
              Enables non-blocking operation for the userfaultfd object.  See the description of the O_NONBLOCK flag in open(2).

       When  the  last  file  descriptor referring to a userfaultfd object is closed, all memory ranges that were registered with the object are unregistered and unread
       events are flushed.

       Userfaultfd supports two modes of registration:

       UFFDIO_REGISTER_MODE_MISSING (since 4.10)
              When registered with UFFDIO_REGISTER_MODE_MISSING mode, user-space will receive a page-fault notification when a missing page is  accessed.   The  faulted
              thread will be stopped from execution until the page fault is resolved from user-space by either an UFFDIO_COPY or an UFFDIO_ZEROPAGE ioctl.

       UFFDIO_REGISTER_MODE_WP (since 5.7)
              When  registered with UFFDIO_REGISTER_MODE_WP mode, user-space will receive a page-fault notification when a write-protected page is written.  The faulted
              thread will be stopped from execution until user-space write-unprotects the page using an UFFDIO_WRITEPROTECT ioctl.

       Multiple modes can be enabled at the same time for the same memory range.

       Since Linux 4.14, a userfaultfd page-fault notification can selectively embed faulting thread ID information into the notification.  One  needs  to  enable  this
       feature explicitly using the UFFD_FEATURE_THREAD_ID feature bit when initializing the userfaultfd context.  By default, thread ID reporting is disabled.

   Usage
       The  userfaultfd  mechanism  is  designed to allow a thread in a multithreaded program to perform user-space paging for the other threads in the process.  When a
       page fault occurs for one of the regions registered to the userfaultfd object, the faulting thread is put to sleep and an event is generated that can be read via
       the  userfaultfd  file  descriptor.   The  fault-handling  thread  reads  events  from  this  file descriptor and services them using the operations described in
       ioctl_userfaultfd(2).  When servicing the page fault events, the fault-handling thread can trigger a wake-up for the sleeping thread.

       It is possible for the faulting threads and the fault-handling threads to run in the context of different processes.  In this case, these threads may  belong  to
       different  programs,  and  the  program that executes the faulting threads will not necessarily cooperate with the program that handles the page faults.  In such
       non-cooperative mode, the process that monitors userfaultfd and handles page faults needs to be aware of the changes in the virtual memory layout of the faulting
       process to avoid memory corruption.

       Since Linux 4.11, userfaultfd can also notify the fault-handling threads about changes in the virtual memory layout of the faulting process.  In addition, if the
       faulting process invokes fork(2), the userfaultfd objects associated with the parent may be duplicated into the child process and the userfaultfd monitor will be
       notified  (via  the  UFFD_EVENT_FORK described below) about the file descriptor associated with the userfault objects created for the child process, which allows
       the userfaultfd monitor to perform user-space paging for the child process.  Unlike page faults which have to be synchronous and require an explicit or  implicit
       wakeup, all other events are delivered asynchronously and the non-cooperative process resumes execution as soon as the userfaultfd manager executes read(2).  The
       userfaultfd manager should carefully synchronize calls to UFFDIO_COPY with the processing of events.

       The current asynchronous model of the event delivery is optimal for single threaded non-cooperative userfaultfd manager implementations.

       Since Linux 5.7, userfaultfd is able to do synchronous page dirty tracking using the new write-protect register mode.  One should check against the  feature  bit
       UFFD_FEATURE_PAGEFAULT_FLAG_WP  before  using this feature.  Similar to the original userfaultfd missing mode, the write-protect mode will generate a userfaultfd
       notification when the protected page is written.  The user needs to resolve the page fault by unprotecting the faulted page and kicking  the  faulted  thread  to
       continue.  For more information, please refer to the "Userfaultfd write-protect mode" section.

   Userfaultfd operation
       After  the  userfaultfd  object  is  created with userfaultfd(), the application must enable it using the UFFDIO_API ioctl(2) operation.  This operation allows a
       handshake between the kernel and user space to determine the API version and supported features.  This operation must  be  performed  before  any  of  the  other
       ioctl(2) operations described below (or those operations fail with the EINVAL error).

       After  a  successful  UFFDIO_API  operation, the application then registers memory address ranges using the UFFDIO_REGISTER ioctl(2) operation.  After successful
       completion of a UFFDIO_REGISTER operation, a page fault occurring in the requested memory range, and satisfying the mode defined at the registration  time,  will
       be  forwarded  by  the  kernel to the user-space application.  The application can then use the UFFDIO_COPY or UFFDIO_ZEROPAGE ioctl(2) operations to resolve the
       page fault.

       Since Linux 4.14, if the application sets the UFFD_FEATURE_SIGBUS feature bit using the UFFDIO_API ioctl(2), no page-fault notification will be forwarded to user
       space.  Instead a SIGBUS signal is delivered to the faulting process.  With this feature, userfaultfd can be used for robustness purposes to simply catch any ac‐
       cess to areas within the registered address range that do not have pages allocated, without having to listen to userfaultfd events.  No userfaultfd monitor  will
       be  required  for dealing with such memory accesses.  For example, this feature can be useful for applications that want to prevent the kernel from automatically
       allocating pages and filling holes in sparse files when the hole is accessed through a memory mapping.

       The UFFD_FEATURE_SIGBUS feature is implicitly inherited through fork(2) if used in combination with UFFD_FEATURE_FORK.

       Details of the various ioctl(2) operations can be found in ioctl_userfaultfd(2).

       Since Linux 4.11, events other than page-fault may enabled during UFFDIO_API operation.

       Up to Linux 4.11, userfaultfd can be used only with anonymous private memory mappings.  Since Linux 4.11, userfaultfd can be also used with hugetlbfs and  shared
       memory mappings.

   Userfaultfd write-protect mode (since 5.7)
       Since  Linux 5.7, userfaultfd supports write-protect mode.  The user needs to first check availability of this feature using UFFDIO_API ioctl against the feature
       bit UFFD_FEATURE_PAGEFAULT_FLAG_WP before using this feature.

       To register with userfaultfd write-protect mode, the user needs to initiate the UFFDIO_REGISTER ioctl with mode UFFDIO_REGISTER_MODE_WP set.  Note that it is le‐
       gal  to monitor the same memory range with multiple modes.  For example, the user can do UFFDIO_REGISTER with the mode set to UFFDIO_REGISTER_MODE_MISSING | UFF‐
       DIO_REGISTER_MODE_WP.  When there is only UFFDIO_REGISTER_MODE_WP registered, user-space will not receive any notification when a missing page is  written.   In‐
       stead, user-space will receive a write-protect page-fault notification only when an existing but write-protected page got written.

       After  the UFFDIO_REGISTER ioctl completed with UFFDIO_REGISTER_MODE_WP mode set, the user can write-protect any existing memory within the range using the ioctl
       UFFDIO_WRITEPROTECT where uffdio_writeprotect.mode should be set to UFFDIO_WRITEPROTECT_MODE_WP.

       When a write-protect event happens, user-space will receive a page-fault notification whose uffd_msg.pagefault.flags will  be  with  UFFD_PAGEFAULT_FLAG_WP  flag
       set.   Note:  since only writes can trigger this kind of fault, write-protect notifications will always have the UFFD_PAGEFAULT_FLAG_WRITE bit set along with the
       UFFD_PAGEFAULT_FLAG_WP bit.

       To resolve a write-protection page fault, the user should initiate another UFFDIO_WRITEPROTECT ioctl, whose uffd_msg.pagefault.flags should have  the  flag  UFF‐
       DIO_WRITEPROTECT_MODE_WP cleared upon the faulted page or range.

       Write-protect mode supports only private anonymous memory.

   Reading from the userfaultfd structure
       Each  read(2)  from  the userfaultfd file descriptor returns one or more uffd_msg structures, each of which describes a page-fault event or an event required for
       the non-cooperative userfaultfd usage:

           struct uffd_msg {
               __u8  event;            /* Type of event */
               ...
               union {
                   struct {
                       __u64 flags;    /* Flags describing fault */
                       __u64 address;  /* Faulting address */
                       union {
                           __u32 ptid; /* Thread ID of the fault */
                       } feat;
                   } pagefault;

                   struct {            /* Since Linux 4.11 */
                       __u32 ufd;      /* Userfault file descriptor
                                          of the child process */
                   } fork;

                   struct {            /* Since Linux 4.11 */
                       __u64 from;     /* Old address of remapped area */
                       __u64 to;       /* New address of remapped area */
                       __u64 len;      /* Original mapping length */
                   } remap;

                   struct {            /* Since Linux 4.11 */
                       __u64 start;    /* Start address of removed area */
                       __u64 end;      /* End address of removed area */
                   } remove;
                   ...
               } arg;

               /* Padding fields omitted */
           } __packed;

       If multiple events are available and the supplied buffer is large enough, read(2) returns as many events as will fit in the supplied buffer.  If the buffer  sup‐
       plied to read(2) is smaller than the size of the uffd_msg structure, the read(2) fails with the error EINVAL.

       The fields set in the uffd_msg structure are as follows:

       event  The  type  of  event.   Depending of the event type, different fields of the arg union represent details required for the event processing.  The non-page-
              fault events are generated only when appropriate feature is enabled during API handshake with UFFDIO_API ioctl(2).

              The following values can appear in the event field:

              UFFD_EVENT_PAGEFAULT (since Linux 4.3)
                     A page-fault event.  The page-fault details are available in the pagefault field.

              UFFD_EVENT_FORK (since Linux 4.11)
                     Generated when the faulting process invokes fork(2) (or clone(2) without the CLONE_VM flag).  The event details are available in the fork field.

              UFFD_EVENT_REMAP (since Linux 4.11)
                     Generated when the faulting process invokes mremap(2).  The event details are available in the remap field.

              UFFD_EVENT_REMOVE (since Linux 4.11)
                     Generated when the faulting process invokes madvise(2) with MADV_DONTNEED or MADV_REMOVE advice.  The event details are  available  in  the  remove
                     field.

              UFFD_EVENT_UNMAP (since Linux 4.11)
                     Generated  when the faulting process unmaps a memory range, either explicitly using munmap(2) or implicitly during mmap(2) or mremap(2).  The event
                     details are available in the remove field.

       pagefault.address
              The address that triggered the page fault.

       pagefault.flags
              A bit mask of flags that describe the event.  For UFFD_EVENT_PAGEFAULT, the following flag may appear:

              UFFD_PAGEFAULT_FLAG_WRITE
                     If the address is in a range that was registered with the UFFDIO_REGISTER_MODE_MISSING flag (see ioctl_userfaultfd(2)) and this flag is set, this a
                     write fault; otherwise it is a read fault.

              UFFD_PAGEFAULT_FLAG_WP
                     If the address is in a range that was registered with the UFFDIO_REGISTER_MODE_WP flag, when this bit is set, it means it is a write-protect fault.
                     Otherwise it is a page-missing fault.

       pagefault.feat.pid
              The thread ID that triggered the page fault.

       fork.ufd
              The file descriptor associated with the userfault object created for the child created by fork(2).

       remap.from
              The original address of the memory range that was remapped using mremap(2).

       remap.to
              The new address of the memory range that was remapped using mremap(2).

       remap.len
              The original length of the memory range that was remapped using mremap(2).

       remove.start
              The start address of the memory range that was freed using madvise(2) or unmapped

       remove.end
              The end address of the memory range that was freed using madvise(2) or unmapped

       A read(2) on a userfaultfd file descriptor can fail with the following errors:

       EINVAL The userfaultfd object has not yet been enabled using the UFFDIO_API ioctl(2) operation

       If the O_NONBLOCK flag is enabled in the associated open file description, the userfaultfd  file  descriptor  can  be  monitored  with  poll(2),  select(2),  and
       epoll(7).  When events are available, the file descriptor indicates as readable.  If the O_NONBLOCK flag is not enabled, then poll(2) (always) indicates the file
       as having a POLLERR condition, and select(2) indicates the file descriptor as both readable and writable.

RETURN VALUE
       On success, userfaultfd() returns a new file descriptor that refers to the userfaultfd object.  On error, -1 is returned, and errno is set to indicate the error.

ERRORS
       EINVAL An unsupported value was specified in flags.

       EMFILE The per-process limit on the number of open file descriptors has been reached

       ENFILE The system-wide limit on the total number of open files has been reached.

       ENOMEM Insufficient kernel memory was available.

       EPERM (since Linux 5.2)
              The caller is not privileged (does not have the CAP_SYS_PTRACE capability in the initial user namespace),  and  /proc/sys/vm/unprivileged_userfaultfd  has
              the value 0.

VERSIONS
       The userfaultfd() system call first appeared in Linux 4.3.

       The support for hugetlbfs and shared memory areas and non-page-fault events was added in Linux 4.11

CONFORMING TO
       userfaultfd() is Linux-specific and should not be used in programs intended to be portable.

NOTES
       The  userfaultfd  mechanism can be used as an alternative to traditional user-space paging techniques based on the use of the SIGSEGV signal and mmap(2).  It can
       also be used to implement lazy restore for checkpoint/restore mechanisms, as well as post-copy migration to allow (nearly) uninterrupted execution when transfer‐
       ring virtual machines and Linux containers from one host to another.

BUGS
       If the UFFD_FEATURE_EVENT_FORK is enabled and a system call from the fork(2) family is interrupted by a signal or failed, a stale userfaultfd descriptor might be
       created.  In this case, a spurious UFFD_EVENT_FORK will be delivered to the userfaultfd monitor.

EXAMPLES
       The program below demonstrates the use of the userfaultfd mechanism.  The program creates two threads, one of which  acts  as  the  page-fault  handler  for  the
       process, for the pages in a demand-page zero region created using mmap(2).

       The  program  takes  one command-line argument, which is the number of pages that will be created in a mapping whose page faults will be handled via userfaultfd.
       After creating a userfaultfd object, the program then creates an anonymous private mapping of the specified size and registers the address range of that  mapping
       using the UFFDIO_REGISTER ioctl(2) operation.  The program then creates a second thread that will perform the task of handling page faults.

       The main thread then walks through the pages of the mapping fetching bytes from successive pages.  Because the pages have not yet been accessed, the first access
       of a byte in each page will trigger a page-fault event on the userfaultfd file descriptor.

       Each of the page-fault events is handled by the second thread, which sits in a loop processing input from the userfaultfd file descriptor.  In each  loop  itera‐
       tion,  the second thread first calls poll(2) to check the state of the file descriptor, and then reads an event from the file descriptor.  All such events should
       be UFFD_EVENT_PAGEFAULT events, which the thread handles by copying a page of data into the faulting region using the UFFDIO_COPY ioctl(2) operation.

       The following is an example of what we see when running the program:

           $ ./userfaultfd_demo 3
           Address returned by mmap() = 0x7fd30106c000

           fault_handler_thread():
               poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
               UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106c00f
                   (uffdio_copy.copy returned 4096)
           Read address 0x7fd30106c00f in main(): A
           Read address 0x7fd30106c40f in main(): A
           Read address 0x7fd30106c80f in main(): A
           Read address 0x7fd30106cc0f in main(): A

           fault_handler_thread():
               poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
               UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106d00f
                   (uffdio_copy.copy returned 4096)
           Read address 0x7fd30106d00f in main(): B
           Read address 0x7fd30106d40f in main(): B
           Read address 0x7fd30106d80f in main(): B
           Read address 0x7fd30106dc0f in main(): B

           fault_handler_thread():
               poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
               UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106e00f
                   (uffdio_copy.copy returned 4096)
           Read address 0x7fd30106e00f in main(): C
           Read address 0x7fd30106e40f in main(): C
           Read address 0x7fd30106e80f in main(): C
           Read address 0x7fd30106ec0f in main(): C

   Program source

       /* userfaultfd_demo.c

          Licensed under the GNU General Public License version 2 or later.
       */
       #define _GNU_SOURCE
       #include <inttypes.h>
       #include <sys/types.h>
       #include <stdio.h>
       #include <linux/userfaultfd.h>
       #include <pthread.h>
       #include <errno.h>
       #include <unistd.h>
       #include <stdlib.h>
       #include <fcntl.h>
       #include <signal.h>
       #include <poll.h>
       #include <string.h>
       #include <sys/mman.h>
       #include <sys/syscall.h>
       #include <sys/ioctl.h>
       #include <poll.h>

       #define errExit(msg)    do { perror(msg); exit(EXIT_FAILURE); \
                               } while (0)

       static int page_size;

       static void *
       fault_handler_thread(void *arg)
       {
           static struct uffd_msg msg;   /* Data read from userfaultfd */
           static int fault_cnt = 0;     /* Number of faults so far handled */
           long uffd;                    /* userfaultfd file descriptor */
           static char *page = NULL;
           struct uffdio_copy uffdio_copy;
           ssize_t nread;

           uffd = (long) arg;

           /* Create a page that will be copied into the faulting region. */

           if (page == NULL) {
               page = mmap(NULL, page_size, PROT_READ | PROT_WRITE,
                           MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
               if (page == MAP_FAILED)
                   errExit("mmap");
           }

           /* Loop, handling incoming events on the userfaultfd
              file descriptor. */

           for (;;) {

               /* See what poll() tells us about the userfaultfd. */

               struct pollfd pollfd;
               int nready;
               pollfd.fd = uffd;
               pollfd.events = POLLIN;
               nready = poll(&pollfd, 1, -1);
               if (nready == -1)
                   errExit("poll");

               printf("\nfault_handler_thread():\n");
               printf("    poll() returns: nready = %d; "
                       "POLLIN = %d; POLLERR = %d\n", nready,
                       (pollfd.revents & POLLIN) != 0,
                       (pollfd.revents & POLLERR) != 0);

               /* Read an event from the userfaultfd. */

               nread = read(uffd, &msg, sizeof(msg));
               if (nread == 0) {
                   printf("EOF on userfaultfd!\n");
                   exit(EXIT_FAILURE);
               }

               if (nread == -1)
                   errExit("read");

               /* We expect only one kind of event; verify that assumption. */

               if (msg.event != UFFD_EVENT_PAGEFAULT) {
                   fprintf(stderr, "Unexpected event on userfaultfd\n");
                   exit(EXIT_FAILURE);
               }

               /* Display info about the page-fault event. */

               printf("    UFFD_EVENT_PAGEFAULT event: ");
               printf("flags = %"PRIx64"; ", msg.arg.pagefault.flags);
               printf("address = %"PRIx64"\n", msg.arg.pagefault.address);

               /* Copy the page pointed to by 'page' into the faulting
                  region. Vary the contents that are copied in, so that it
                  is more obvious that each fault is handled separately. */

               memset(page, 'A' + fault_cnt % 20, page_size);
               fault_cnt++;

               uffdio_copy.src = (unsigned long) page;

               /* We need to handle page faults in units of pages(!).
                  So, round faulting address down to page boundary. */

               uffdio_copy.dst = (unsigned long) msg.arg.pagefault.address &
                                                  ~(page_size - 1);
               uffdio_copy.len = page_size;
               uffdio_copy.mode = 0;
               uffdio_copy.copy = 0;
               if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1)
                   errExit("ioctl-UFFDIO_COPY");

               printf("        (uffdio_copy.copy returned %"PRId64")\n",
                       uffdio_copy.copy);
           }
       }

       int
       main(int argc, char *argv[])
       {
           long uffd;          /* userfaultfd file descriptor */
           char *addr;         /* Start of region handled by userfaultfd */
           uint64_t len;       /* Length of region handled by userfaultfd */
           pthread_t thr;      /* ID of thread that handles page faults */
           struct uffdio_api uffdio_api;
           struct uffdio_register uffdio_register;
           int s;

           if (argc != 2) {
               fprintf(stderr, "Usage: %s num-pages\n", argv[0]);
               exit(EXIT_FAILURE);
           }

           page_size = sysconf(_SC_PAGE_SIZE);
           len = strtoull(argv[1], NULL, 0) * page_size;

           /* Create and enable userfaultfd object. */

           uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
           if (uffd == -1)
               errExit("userfaultfd");

           uffdio_api.api = UFFD_API;
           uffdio_api.features = 0;
           if (ioctl(uffd, UFFDIO_API, &uffdio_api) == -1)
               errExit("ioctl-UFFDIO_API");

           /* Create a private anonymous mapping. The memory will be
              demand-zero paged--that is, not yet allocated. When we
              actually touch the memory, it will be allocated via
              the userfaultfd. */

           addr = mmap(NULL, len, PROT_READ | PROT_WRITE,
                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
           if (addr == MAP_FAILED)
               errExit("mmap");

           printf("Address returned by mmap() = %p\n", addr);

           /* Register the memory range of the mapping we just created for
              handling by the userfaultfd object. In mode, we request to track
              missing pages (i.e., pages that have not yet been faulted in). */

           uffdio_register.range.start = (unsigned long) addr;
           uffdio_register.range.len = len;
           uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
           if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) == -1)
               errExit("ioctl-UFFDIO_REGISTER");

           /* Create a thread that will process the userfaultfd events. */

           s = pthread_create(&thr, NULL, fault_handler_thread, (void *) uffd);
           if (s != 0) {
               errno = s;
               errExit("pthread_create");
           }

           /* Main thread now touches memory in the mapping, touching
              locations 1024 bytes apart. This will trigger userfaultfd
              events for all pages in the region. */

           int l;
           l = 0xf;    /* Ensure that faulting address is not on a page
                          boundary, in order to test that we correctly
                          handle that case in fault_handling_thread(). */
           while (l < len) {
               char c = addr[l];
               printf("Read address %p in main(): ", addr + l);
               printf("%c\n", c);
               l += 1024;
               usleep(100000);         /* Slow things down a little */
           }

           exit(EXIT_SUCCESS);
       }

SEE ALSO
       fcntl(2), ioctl(2), ioctl_userfaultfd(2), madvise(2), mmap(2)

       Documentation/admin-guide/mm/userfaultfd.rst in the Linux kernel source tree

Linux                                                                          2021-03-22                                                                 USERFAULTFD(2)