💾 Archived View for spam.works › mirrors › textfiles › computers › dosmem.txt captured on 2023-12-28 at 17:16:10.

View Raw

More Information

⬅️ Previous capture (2023-06-14)

-=-=-=-=-=-=-

                  PC Memory Management Overview



DOS users are faced with a confusing array of memory
configurations today.  There's conventional memory, upper memory,
expanded memory, extended memory, and the high memory area to
name a few.  Plus there are acronyms like UMB (Upper Memory
Block), EMS (Expanded Memory Specification), XMS (eXtended Memory
Specification), HMA (High Memory Area), VCPI (Virtual Control
Program Interface) and DPMI (DOS Protected Mode Interface), which
confuse matters even further.

In this document, we'll try to explain the PC Memory
Architecture, as well as popular memory management techniques and
standards.

The reason for all of these different types of memory has to do
with the evolution of the Intel 80x86 family of microprocessors
over the years.  Since the 8086 and 8088 microprocessors, used in
the original IBM PC and "XT-class" machines, we've seen
tremendous growth in the speed and capabilities of PC
microprocessors, yet limitations of the original 8086 design
still hold us back.  The primary limitation is the ability of the
8086 and 8088 processors to only address a 1MB range of
memory...which seemed like a lot for their time, when 64KB was
the extent of the addressing capability of competing non-Intel
microprocessors.

When IBM designed the original PC, they reserved the upper 384KB
of this 1MB for the PC BIOS (Basic Input/Output System), video
memory, and for adapter boards to install additional RAM,
allowing applications to write directly to added RAM in order to
communicate with the adapter.  This left us with 640KB for DOS
and application programs.

The 80286 microprocessor supports a full 16MB address space,
however this additional memory is only accessible when the 80286
operates in what is termed as its protected mode.  The default
mode of operation for the 80286 is real mode, which is 8086
compatible.  In real mode, the 80286 is little more than a fast
8086.

At the time that the 80286 was being designed by Intel, they had
no idea that the PC and the 8086 would enjoy widespread
popularity, and hence, the design of 80286 protected mode is very
incompatible with real mode.  Intel anticipated that since
protected mode offered so many advantages over real mode, that
real mode would just "go away".

While there is a processor instruction to put the processor into
protected mode, there is no way to return!  Applications like
non-dedicated NetWare 2.x, OS/2 v1.x and the various DOS
extenders, have to play some real feats of magic in order to
switch between real and protected modes.

Mostly, the switch from protected mode back to real mode is done
by performing a hard reset on the microprocessor (CTRL-ALT-DEL
like).  Before the processor is reset, a command is sent out to
the keyboard controller.  The response back from the keyboard
controller is what wakes the processor back up from its reset,
now in real mode.  This is the reason why people often report
sluggish keyboard problems with non-dedicated NetWare.  Not all
keyboard controllers are designed to support this operation.

The 80386 added some exciting new features.  In addition to
supporting 8086 real mode and 80286 protected mode, the 80386
supports even more than 16MB, 4GB of physical memory, and 1TB of
virtual memory.  Thanks to a flat 32-bit address space, all
physical memory is accessible in one flat address space
(programmers are often hampered by 64KB at a time addressing
limits on the 8086 and 80286).

One of the real exciting enhancements of the 80386 is its virtual
8086 mode.  Through the 80386's hardware features, it is able to
emulate multiple 8086 microprocessors!  This is how DesqView,
Windows enhanced mode, and OS/2 v2 perform their magic multi-
tasking DOS applications (with varying degrees of success).

The 80386 also supports memory paging in its hardware.
Applications only see a logical view of memory.  When an
application makes a memory request, the processor redirects the
access to the actual physical location.  The 80286 also provided
a limited subset of memory paging support in protected mode only
(on the 80286, paging is on a per 64KB segment basis, the 80386
pages on 4KB boundaries), but the 80386 makes this available in
virtual 8086 mode as well, so that memory management products
like QEMM, 386-to-the-MAX and MS-DOS 5/DR-DOS 6 EMM386 can
perform memory management magic for DOS applications.

Since we're talking about microprocessors for a background, I'll
also mention the 80486.  Effectively, the 80486 is a highly-
tuned, highly-optimized 80386, which doesn't add many new
capabilities, mostly just FASTER execution than past designs of
this family.  The 486 also includes an integrated math
coprocessor (there is no need for an 80487) that really speeds up
number crunching.  The 486SX is essentially a crippled 486
without the built-in math coprocessor.

For the sake of completeness, I'll also mention the 386SX.  The
386SX is software compatible with the 80386, except that all
external accesses that it makes to the outside world are made 16
bits at a time instead of 32 bits, which makes it a tad slower
than a full blown 386 when it comes to accessing memory and
devices.  Similarly, the 8088 is an 8086 compatible processor,
except that it makes its external accesses 8 bits at a time
instead of 16 bits at a time.  While this type of design makes
the system a little slower, it allows for lower priced components
to be used in building the system, making enhanced processor
capabilities available in machines at lower price points.

With a history of the Intel family of processors in mind, let's
move on to the different types of memory.

Conventional Memory is the memory range between 0 and 640KB,
which is directly accessible to DOS applications.  DOS and TSRs
begin loading at the bottom area of memory and work their way up.

Upper Memory (UMB for upper memory blocks) is memory between
640KB and 1MB.  This memory begins at segment A000h, and is
directly accessible from real mode, just "reserved" by the
original PC design.

Video buffers comprise the first 128KB of memory.  The first 64KB
(A000-AFFF) is typically used by EGA/VGA graphics modes.  The
next 32KB is the monochrome video text buffer (B000-B7FF),
followed by 32KB for the color text video buffer (B800-BFFF).
(The different buffer addresses were intended to allow color and
monochrome systems both reside in the same system.)

Other ranges of upper memory are used by other adapters (like
network cards), and the PC's BIOS.  The BIOS area is normally the
top 64KB (F000-FFFF), although some systems use a 128KB BIOS
(like PS/2s) (E000-FFFF).

The left-over memory can be used for various purposes.  On a 386
system, the 386 processor's paging techniques are used to map
extended memory (memory beyond the 1MB limit, we'll get to it
shortly) into the upper memory area, so that it can be addressed
by the processor in real mode (or really virtual 8086 mode).  On
a 286 system, an expanded memory board can be installed, which
installs physically addressable memory into this range of upper
memory.

Upper Memory blocks, or UMBs, are used for loading TSR programs
"high", such  as with the MS-DOS 5 LOADHIGH and DR-DOS 6 HILOAD
commands.  Memory managers for the 80386 can map memory into the
upper memory area so that TSRs can be loaded outside of the
standard 640KB.  It is interesting to note that LOADHIGH and
HILOAD load programs into upper memory, and not the actual area
of memory known as the High Memory Area (HMA), which we will
cover shortly.

The memory manager remaps exTENded memory for use as upper
memory.  On a 286 or 8086 with exPANded memory hardware
supporting the LIM EMS 4.0 specification, Quarterdeck's (the QEMM
developers) QRAM product can convert exPANded memory into upper
memory.

ExPANded memory itself is actually addressed out of upper memory.
In most implementations, 64KB of the upper memory area is set
aside as the expanded memory page frame.  Applications can then
map in 64KB of expanded memory at a time, requesting different
"pages" of expanded memory.  (The LIM EMS 4.0 specification can
get a little more flexible than this.)  Usually, the expanded
memory (EMS) page frame is located at segment D000h.

ExTENded memory is memory that is not addressable by an 80x86
processor in real mode.  It is memory above the 1MB
boundary...accessible only from protected mode (or made
accessible to other applications in virtual 8086 mode on a 386
through paging), which means it is only of real use to protected
mode applications like those built with a DOS extender (Lotus
Release 3.x), non-dedicated NetWare, OS/2, and others.

A memory manager like QEMM or 386-to-the-MAX or MS-DOS 5/DR-DOS 6
EMM386 can convert extended memory into expanded memory and/or
upper memory through 80836 memory paging techniques.

Ironically, the VCPI (Virtual Control Program Interface) is used
by memory managers and DOS Extenders to convert this exPANded
memory back to exTENded memory, for programs like Lotus 3.x,
which require exTENded memory instead of exPANded memory.
Essentially, VCPI (supported by QEMM and 386-to-the-MAX, and
available only on 80386 and above processors), is intended to
give the application the type of memory that it wants...exPANded
memory or exTENded memory.  Rather than setting aside a pre-
allocated amount of each type of memory, both exPANded and
exTENded memory are allocated from the same pool.

DPMI (DOS Protected Mode Interface), is similar to VCPI in
concept, but different in implementation.  DPMI, supported by
Windows 3.x, updated versions of QEMM and 386-to-the-MAX, and
several popular DOS extenders, is designed to allow applications
running in protected mode access to DOS and BIOS services.  As
DOS is a real mode operating system, it requires extensions to
allow protected mode applications access to DOS services.

Real mode DOS applications can also access extended memory by
transferring data in and out of extended memory (which involves
toggling the processor between real and protected modes with a
little help from the BIOS).  These days, most applications that
do this use the XMS specification.  QEMM and 386-to-the-MAX
provide this support, as does Microsoft HIMEM.SYS.  The XMS
specification is a specification to provide some sort of memory
management over extended memory.

There is a special area of exTENded memory, called the High
Memory Area (HMA), which is the first 64KB of extended memory,
which can be directly accessed from a DOS without the processor
being in protected mode.

The HMA is used by MS-DOS 5 when DOS=HIGH is specified in the
CONFIG.SYS file to load part of DOS into the HMA, making more
conventional memory available to applications.  Similar support
is provided in DR-DOS by HIDOS.SYS and/or the EMM386.SYS /B=FFFF
command-line option and HIDOS=ON in the CONFIG.SYS.

For versions of DOS prior to MS-DOS 5, Novell's XMSNETX shell
also makes use of the XMS HMA to load part of the NetWare shell
outside of conventional memory.  With MS-DOS 5 or DR-DOS 6, it is
typically better to let DOS use the HMA as it will give you
better performance and more memory.

Here's a memory chart to help you out...



        +------------------+ 16MB and beyond
        |                  |
        |   EXTENDED       |   Addressable in protected mode, not real mode
        |   MEMORY         |
        |                  |
        |------------------| 1MB + 64KB (- 16 bytes if you're picky)
        | EXTENDED MEMORY  |   first 64KB of exTENded memory
        |    HMA           |   used by MS-DOS DOS=HIGH or XMSNETX shell
        |------------------| 1MB
        | UPPER MEMORY     | (LOADHIGH into unused blocks)
        | PC BIOS          | (usually F000h-FFFFh, sometimes E000h-FFFFh)
        | Expanded Memory  | (usually D000h-DFFFh)
        |  Page Frame      |
        | Network Cards    | (Varies)
        |  & other RAM/ROM |
        | Video Buffer     | (A000h-BFFFh)
        |------------------| 640KB (segment A000h)
        |                  |
        |  CONVENTIONAL    |
        |  MEMORY          |
        |                  |
        |  Applications    |
        |                  |
        |  TSRs            |
        |  DOS             |
        |  BIOS data area  |
        +------------------+ 0KB (bottom of memory)

Confused?

Well...the PC memory architecture is confusing.

In real terms, what all of this means is that 80386 memory
management is your best bet, and why the 80286 and below machines
are dead-end products for the future...they lack the
extendibility and flexibility of the 386 architecture.  386 and
486 computers can turn exTENded memory into exPANded memory and
Upper memory for applications that use those types of memory, and
still support applications that use exTENded memory...making
memory configuration issues far simpler.



- Brett Warthen, Infinite Technologies
  (Last Revision: April 15, 1992)