šŸ’¾ Archived View for gmi.noulin.net ā€ŗ man ā€ŗ man7 ā€ŗ sched.7.gmi captured on 2023-12-28 at 17:41:21. Gemini links have been rewritten to link to archived content

View Raw

More Information

ā¬…ļø Previous capture (2022-06-12)

-=-=-=-=-=-=-

SCHED(7)                                                                Linux Programmer's Manual                                                               SCHED(7)

NAME
       sched - overview of CPU scheduling

DESCRIPTION
       Since Linux 2.6.23, the default scheduler is CFS, the "Completely Fair Scheduler".  The CFS scheduler replaced the earlier "O(1)" scheduler.

   API summary
       Linux provides the following system calls for controlling the CPU scheduling behavior, policy, and priority of processes (or, more precisely, threads).

       nice(2)
              Set a new nice value for the calling thread, and return the new nice value.

       getpriority(2)
              Return the nice value of a thread, a process group, or the set of threads owned by a specified user.

       setpriority(2)
              Set the nice value of a thread, a process group, or the set of threads owned by a specified user.

       sched_setscheduler(2)
              Set the scheduling policy and parameters of a specified thread.

       sched_getscheduler(2)
              Return the scheduling policy of a specified thread.

       sched_setparam(2)
              Set the scheduling parameters of a specified thread.

       sched_getparam(2)
              Fetch the scheduling parameters of a specified thread.

       sched_get_priority_max(2)
              Return the maximum priority available in a specified scheduling policy.

       sched_get_priority_min(2)
              Return the minimum priority available in a specified scheduling policy.

       sched_rr_get_interval(2)
              Fetch the quantum used for threads that are scheduled under the "round-robin" scheduling policy.

       sched_yield(2)
              Cause the caller to relinquish the CPU, so that some other thread be executed.

       sched_setaffinity(2)
              (Linux-specific) Set the CPU affinity of a specified thread.

       sched_getaffinity(2)
              (Linux-specific) Get the CPU affinity of a specified thread.

       sched_setattr(2)
              Set  the  scheduling  policy  and  parameters  of  a  specified  thread.   This  (Linux-specific)  system call provides a superset of the functionality of
              sched_setscheduler(2) and sched_setparam(2).

       sched_getattr(2)
              Fetch the scheduling policy and parameters of a specified thread.  This  (Linux-specific)  system  call  provides  a  superset  of  the  functionality  of
              sched_getscheduler(2) and sched_getparam(2).

   Scheduling policies
       The scheduler is the kernel component that decides which runnable thread will be executed by the CPU next.  Each thread has an associated scheduling policy and a
       static scheduling priority, sched_priority.  The scheduler makes its decisions based on knowledge of the scheduling policy and static priority of all threads  on
       the system.

       For  threads scheduled under one of the normal scheduling policies (SCHED_OTHER, SCHED_IDLE, SCHED_BATCH), sched_priority is not used in scheduling decisions (it
       must be specified as 0).

       Processes scheduled under one of the real-time policies (SCHED_FIFO, SCHED_RR) have a sched_priority value in the range 1 (low) to 99 (high).   (As  the  numbers
       imply,  real-time  threads always have higher priority than normal threads.)  Note well: POSIX.1 requires an implementation to support only a minimum 32 distinct
       priority levels for the real-time policies, and some systems supply just this minimum.  Portable programs should use sched_get_priority_min(2) and sched_get_priā€
       ority_max(2) to find the range of priorities supported for a particular policy.

       Conceptually,  the  scheduler  maintains  a  list  of runnable threads for each possible sched_priority value.  In order to determine which thread runs next, the
       scheduler looks for the nonempty list with the highest static priority and selects the thread at the head of this list.

       A thread's scheduling policy determines where it will be inserted into the list of threads with equal static priority and how it will move inside this list.

       All scheduling is preemptive: if a thread with a higher static priority becomes ready to run, the currently running thread will be preempted and returned to  the
       wait list for its static priority level.  The scheduling policy determines the ordering only within the list of runnable threads with equal static priority.

   SCHED_FIFO: First in-first out scheduling
       SCHED_FIFO  can be used only with static priorities higher than 0, which means that when a SCHED_FIFO thread becomes runnable, it will always immediately preempt
       any currently running SCHED_OTHER, SCHED_BATCH, or SCHED_IDLE thread.  SCHED_FIFO is a simple scheduling algorithm without time slicing.  For  threads  scheduled
       under the SCHED_FIFO policy, the following rules apply:

       1) A  running  SCHED_FIFO  thread that has been preempted by another thread of higher priority will stay at the head of the list for its priority and will resume
          execution as soon as all threads of higher priority are blocked again.

       2) When a blocked SCHED_FIFO thread becomes runnable, it will be inserted at the end of the list for its priority.

       3) If a call to sched_setscheduler(2), sched_setparam(2), sched_setattr(2), pthread_setschedparam(3), or pthread_setschedprio(3) changes the priority of the runā€
          ning  or runnable SCHED_FIFO thread identified by pid the effect on the thread's position in the list depends on the direction of the change to threads priorā€
          ity:

          ā€¢  If the thread's priority is raised, it is placed at the end of the list for its new priority.  As a consequence, it may preempt a currently running  thread
             with the same priority.

          ā€¢  If the thread's priority is unchanged, its position in the run list is unchanged.

          ā€¢  If the thread's priority is lowered, it is placed at the front of the list for its new priority.

          According to POSIX.1-2008, changes to a thread's priority (or policy) using any mechanism other than pthread_setschedprio(3) should result in the thread being
          placed at the end of the list for its priority.

       4) A thread calling sched_yield(2) will be put at the end of the list.

       No other events will move a thread scheduled under the SCHED_FIFO policy in the wait list of runnable threads with equal static priority.

       A SCHED_FIFO thread runs until either it is blocked by an I/O request, it is preempted by a higher priority thread, or it calls sched_yield(2).

   SCHED_RR: Round-robin scheduling
       SCHED_RR is a simple enhancement of SCHED_FIFO.  Everything described above for SCHED_FIFO also applies to SCHED_RR, except that each thread is  allowed  to  run
       only  for a maximum time quantum.  If a SCHED_RR thread has been running for a time period equal to or longer than the time quantum, it will be put at the end of
       the list for its priority.  A SCHED_RR thread that has been preempted by a higher priority thread and subsequently resumes execution as  a  running  thread  will
       complete the unexpired portion of its round-robin time quantum.  The length of the time quantum can be retrieved using sched_rr_get_interval(2).

   SCHED_DEADLINE: Sporadic task model deadline scheduling
       Since  version  3.14,  Linux  provides  a deadline scheduling policy (SCHED_DEADLINE).  This policy is currently implemented using GEDF (Global Earliest Deadline
       First) in conjunction with CBS (Constant Bandwidth Server).  To set and fetch this policy and associated attributes, one must use  the  Linux-specific  sched_seā€
       tattr(2) and sched_getattr(2) system calls.

       A  sporadic task is one that has a sequence of jobs, where each job is activated at most once per period.  Each job also has a relative deadline, before which it
       should finish execution, and a computation time, which is the CPU time necessary for executing the job.  The moment when a task wakes up because a new job has to
       be  executed is called the arrival time (also referred to as the request time or release time).  The start time is the time at which a task starts its execution.
       The absolute deadline is thus obtained by adding the relative deadline to the arrival time.

       The following diagram clarifies these terms:

           arrival/wakeup                    absolute deadline
                |    start time                    |
                |        |                         |
                v        v                         v
           -----x--------xooooooooooooooooo--------x--------x---
                         |<- comp. time ->|
                |<------- relative deadline ------>|
                |<-------------- period ------------------->|

       When setting a SCHED_DEADLINE policy for a thread using sched_setattr(2), one can specify three parameters: Runtime, Deadline, and Period.  These  parameters  do
       not necessarily correspond to the aforementioned terms: usual practice is to set Runtime to something bigger than the average computation time (or worst-case exā€
       ecution time for hard real-time tasks), Deadline to the relative deadline, and Period to the period of the task.  Thus, for SCHED_DEADLINE scheduling, we have:

           arrival/wakeup                    absolute deadline
                |    start time                    |
                |        |                         |
                v        v                         v
           -----x--------xooooooooooooooooo--------x--------x---
                         |<-- Runtime ------->|
                |<----------- Deadline ----------->|
                |<-------------- Period ------------------->|

       The three deadline-scheduling parameters correspond to the sched_runtime, sched_deadline, and sched_period fields of  the  sched_attr  structure;  see  sched_seā€
       tattr(2).  These fields express values in nanoseconds.  If sched_period is specified as 0, then it is made the same as sched_deadline.

       The kernel requires that:

           sched_runtime <= sched_deadline <= sched_period

       In addition, under the current implementation, all of the parameter values must be at least 1024 (i.e., just over one microsecond, which is the resolution of the
       implementation), and less than 2^63.  If any of these checks fails, sched_setattr(2) fails with the error EINVAL.

       The CBS guarantees non-interference between tasks, by throttling threads that attempt to over-run their specified Runtime.

       To ensure deadline scheduling guarantees, the kernel must prevent situations where the set of SCHED_DEADLINE threads is not  feasible  (schedulable)  within  the
       given  constraints.   The  kernel thus performs an admittance test when setting or changing SCHED_DEADLINE policy and attributes.  This admission test calculates
       whether the change is feasible; if it is not, sched_setattr(2) fails with the error EBUSY.

       For example, it is required (but not necessarily sufficient) for the total utilization to be less than or equal to the total number  of  CPUs  available,  where,
       since each thread can maximally run for Runtime per Period, that thread's utilization is its Runtime divided by its Period.

       In  order  to  fulfill the guarantees that are made when a thread is admitted to the SCHED_DEADLINE policy, SCHED_DEADLINE threads are the highest priority (user
       controllable) threads in the system; if any SCHED_DEADLINE thread is runnable, it will preempt any thread scheduled under one of the other policies.

       A call to fork(2) by a thread scheduled under the SCHED_DEADLINE policy fails with the error EAGAIN, unless the thread has its reset-on-fork flag  set  (see  beā€
       low).

       A SCHED_DEADLINE thread that calls sched_yield(2) will yield the current job and wait for a new period to begin.

   SCHED_OTHER: Default Linux time-sharing scheduling
       SCHED_OTHER  can  be used at only static priority 0 (i.e., threads under real-time policies always have priority over SCHED_OTHER processes).  SCHED_OTHER is the
       standard Linux time-sharing scheduler that is intended for all threads that do not require the special real-time mechanisms.

       The thread to run is chosen from the static priority 0 list based on a dynamic priority that is determined only inside this list.  The dynamic priority is  based
       on  the nice value (see below) and is increased for each time quantum the thread is ready to run, but denied to run by the scheduler.  This ensures fair progress
       among all SCHED_OTHER threads.

       In the Linux kernel source code, the SCHED_OTHER policy is actually named SCHED_NORMAL.

   The nice value
       The nice value is an attribute that can be used to influence the CPU scheduler to favor or disfavor a process in scheduling decisions.  It affects the scheduling
       of SCHED_OTHER and SCHED_BATCH (see below) processes.  The nice value can be modified using nice(2), setpriority(2), or sched_setattr(2).

       According  to POSIX.1, the nice value is a per-process attribute; that is, the threads in a process should share a nice value.  However, on Linux, the nice value
       is a per-thread attribute: different threads in the same process may have different nice values.

       The range of the nice value varies across UNIX systems.  On modern Linux, the range is -20 (high priority) to +19 (low priority).  On  some  other  systems,  the
       range is -20..20.  Very early Linux kernels (Before Linux 2.0) had the range -infinity..15.

       The degree to which the nice value affects the relative scheduling of SCHED_OTHER processes likewise varies across UNIX systems and across Linux kernel versions.

       With the advent of the CFS scheduler in kernel 2.6.23, Linux adopted an algorithm that causes relative differences in nice values to have a much stronger effect.
       In the current implementation, each unit of difference in the nice values of two processes results in a factor of 1.25 in the degree to which the  scheduler  faā€
       vors  the  higher  priority process.  This causes very low nice values (+19) to truly provide little CPU to a process whenever there is any other higher priority
       load on the system, and makes high nice values (-20) deliver most of the CPU to applications that require it (e.g., some audio applications).

       On Linux, the RLIMIT_NICE resource limit can be used to define a limit to which an unprivileged process's nice value can be raised; see setrlimit(2) for details.

       For further details on the nice value, see the subsections on the autogroup feature and group scheduling, below.

   SCHED_BATCH: Scheduling batch processes
       (Since Linux 2.6.16.)  SCHED_BATCH can be used only at static priority 0.  This policy is similar to SCHED_OTHER in that it schedules the thread according to its
       dynamic priority (based on the nice value).  The difference is that this policy will cause the scheduler to always assume that the thread is CPU-intensive.  Conā€
       sequently, the scheduler will apply a small scheduling penalty with respect to wakeup behavior, so that this thread is mildly disfavored in scheduling decisions.

       This policy is useful for workloads that are noninteractive, but do not want to lower their nice value, and for workloads that want  a  deterministic  scheduling
       policy without interactivity causing extra preemptions (between the workload's tasks).

   SCHED_IDLE: Scheduling very low priority jobs
       (Since Linux 2.6.23.)  SCHED_IDLE can be used only at static priority 0; the process nice value has no influence for this policy.

       This policy is intended for running jobs at extremely low priority (lower even than a +19 nice value with the SCHED_OTHER or SCHED_BATCH policies).

   Resetting scheduling policy for child processes
       Each  thread  has a reset-on-fork scheduling flag.  When this flag is set, children created by fork(2) do not inherit privileged scheduling policies.  The reset-
       on-fork flag can be set by either:

       *  ORing the SCHED_RESET_ON_FORK flag into the policy argument when calling sched_setscheduler(2) (since Linux 2.6.32); or

       *  specifying the SCHED_FLAG_RESET_ON_FORK flag in attr.sched_flags when calling sched_setattr(2).

       Note that the constants used with these two APIs have different names.  The state of the reset-on-fork flag can analogously be  retrieved  using  sched_getschedā€
       uler(2) and sched_getattr(2).

       The  reset-on-fork  feature  is  intended  for media-playback applications, and can be used to prevent applications evading the RLIMIT_RTTIME resource limit (see
       getrlimit(2)) by creating multiple child processes.

       More precisely, if the reset-on-fork flag is set, the following rules apply for subsequently created children:

       *  If the calling thread has a scheduling policy of SCHED_FIFO or SCHED_RR, the policy is reset to SCHED_OTHER in child processes.

       *  If the calling process has a negative nice value, the nice value is reset to zero in child processes.

       After the reset-on-fork flag has been enabled, it can be reset only if the thread has the CAP_SYS_NICE capability.  This flag is disabled in child processes creā€
       ated by fork(2).

   Privileges and resource limits
       In  Linux  kernels  before  2.6.12, only privileged (CAP_SYS_NICE) threads can set a nonzero static priority (i.e., set a real-time scheduling policy).  The only
       change that an unprivileged thread can make is to set the SCHED_OTHER policy, and this can be done only if the effective user ID of the caller matches  the  real
       or effective user ID of the target thread (i.e., the thread specified by pid) whose policy is being changed.

       A thread must be privileged (CAP_SYS_NICE) in order to set or modify a SCHED_DEADLINE policy.

       Since Linux 2.6.12, the RLIMIT_RTPRIO resource limit defines a ceiling on an unprivileged thread's static priority for the SCHED_RR and SCHED_FIFO policies.  The
       rules for changing scheduling policy and priority are as follows:

       *  If an unprivileged thread has a nonzero RLIMIT_RTPRIO soft limit, then it can change its scheduling policy and priority, subject to the restriction  that  the
          priority cannot be set to a value higher than the maximum of its current priority and its RLIMIT_RTPRIO soft limit.

       *  If the RLIMIT_RTPRIO soft limit is 0, then the only permitted changes are to lower the priority, or to switch to a non-real-time policy.

       *  Subject  to  the same rules, another unprivileged thread can also make these changes, as long as the effective user ID of the thread making the change matches
          the real or effective user ID of the target thread.

       *  Special rules apply for the SCHED_IDLE policy.  In Linux kernels before 2.6.39, an unprivileged thread operating under this policy cannot change  its  policy,
          regardless  of  the  value of its RLIMIT_RTPRIO resource limit.  In Linux kernels since 2.6.39, an unprivileged thread can switch to either the SCHED_BATCH or
          the SCHED_OTHER policy so long as its nice value falls within the range permitted by its RLIMIT_NICE resource limit (see getrlimit(2)).

       Privileged (CAP_SYS_NICE) threads ignore the RLIMIT_RTPRIO limit; as with older kernels, they can make arbitrary changes to scheduling policy and priority.   See
       getrlimit(2) for further information on RLIMIT_RTPRIO.

   Limiting the CPU usage of real-time and deadline processes
       A nonblocking infinite loop in a thread scheduled under the SCHED_FIFO, SCHED_RR, or SCHED_DEADLINE policy can potentially block all other threads from accessing
       the CPU forever.  Prior to Linux 2.6.25, the only way of preventing a runaway real-time process from freezing the system was to run  (at  the  console)  a  shell
       scheduled under a higher static priority than the tested application.  This allows an emergency kill of tested real-time applications that do not block or termiā€
       nate as expected.

       Since Linux 2.6.25, there are other techniques for dealing with runaway real-time and deadline processes.  One of these is  to  use  the  RLIMIT_RTTIME  resource
       limit to set a ceiling on the CPU time that a real-time process may consume.  See getrlimit(2) for details.

       Since  version  2.6.25,  Linux also provides two /proc files that can be used to reserve a certain amount of CPU time to be used by non-real-time processes.  Reā€
       serving CPU time in this fashion allows some CPU time to be allocated to (say) a root shell that can be used to kill a runaway  process.   Both  of  these  files
       specify time values in microseconds:

       /proc/sys/kernel/sched_rt_period_us
              This file specifies a scheduling period that is equivalent to 100% CPU bandwidth.  The value in this file can range from 1 to INT_MAX, giving an operating
              range of 1 microsecond to around 35 minutes.  The default value in this file is 1,000,000 (1 second).

       /proc/sys/kernel/sched_rt_runtime_us
              The value in this file specifies how much of the "period" time can be used by all real-time and deadline scheduled processes on the system.  The value  in
              this  file  can  range from -1 to INT_MAX-1.  Specifying -1 makes the run time the same as the period; that is, no CPU time is set aside for non-real-time
              processes (which was the Linux behavior before kernel 2.6.25).  The default value in this file is 950,000 (0.95 seconds), meaning that 5% of the CPU  time
              is reserved for processes that don't run under a real-time or deadline scheduling policy.

   Response time
       A  blocked  high  priority thread waiting for I/O has a certain response time before it is scheduled again.  The device driver writer can greatly reduce this reā€
       sponse time by using a "slow interrupt" interrupt handler.

   Miscellaneous
       Child processes inherit the scheduling policy and parameters across a fork(2).  The scheduling policy and parameters are preserved across execve(2).

       Memory locking is usually needed for real-time processes to avoid paging delays; this can be done with mlock(2) or mlockall(2).

   The autogroup feature
       Since Linux 2.6.38, the kernel provides a feature known as autogrouping to improve interactive desktop performance in the  face  of  multiprocess,  CPU-intensive
       workloads such as building the Linux kernel with large numbers of parallel build processes (i.e., the make(1) -j flag).

       This feature operates in conjunction with the CFS scheduler and requires a kernel that is configured with CONFIG_SCHED_AUTOGROUP.  On a running system, this feaā€
       ture is enabled or disabled via the file /proc/sys/kernel/sched_autogroup_enabled; a value of 0 disables the feature, while a value of 1 enables it.  The default
       value in this file is 1, unless the kernel was booted with the noautogroup parameter.

       A  new autogroup is created when a new session is created via setsid(2); this happens, for example, when a new terminal window is started.  A new process created
       by fork(2) inherits its parent's autogroup membership.  Thus, all of the processes in a session are members of the same autogroup.  An autogroup is automatically
       destroyed when the last process in the group terminates.

       When  autogrouping  is  enabled, all of the members of an autogroup are placed in the same kernel scheduler "task group".  The CFS scheduler employs an algorithm
       that equalizes the distribution of CPU cycles across task groups.  The benefits of this for interactive desktop performance can be described  via  the  following
       example.

       Suppose  that there are two autogroups competing for the same CPU (i.e., presume either a single CPU system or the use of taskset(1) to confine all the processes
       to the same CPU on an SMP system).  The first group contains ten CPU-bound processes from a kernel build started with make -j10.  The  other  contains  a  single
       CPU-bound  process:  a video player.  The effect of autogrouping is that the two groups will each receive half of the CPU cycles.  That is, the video player will
       receive 50% of the CPU cycles, rather than just 9% of the cycles, which would likely lead to degraded video playback.  The situation on an  SMP  system  is  more
       complex,  but the general effect is the same: the scheduler distributes CPU cycles across task groups such that an autogroup that contains a large number of CPU-
       bound processes does not end up hogging CPU cycles at the expense of the other jobs on the system.

       A process's autogroup (task group) membership can be viewed via the file /proc/[pid]/autogroup:

           $ cat /proc/1/autogroup
           /autogroup-1 nice 0

       This file can also be used to modify the CPU bandwidth allocated to an autogroup.  This is done by writing a number in the "nice" range to the file  to  set  the
       autogroup's nice value.  The allowed range is from +19 (low priority) to -20 (high priority).  (Writing values outside of this range causes write(2) to fail with
       the error EINVAL.)

       The autogroup nice setting has the same meaning as the process nice value, but applies to distribution of CPU cycles to the autogroup as a whole,  based  on  the
       relative  nice  values  of  other autogroups.  For a process inside an autogroup, the CPU cycles that it receives will be a product of the autogroup's nice value
       (compared to other autogroups) and the process's nice value (compared to other processes in the same autogroup.

       The use of the cgroups(7) CPU controller to place processes in cgroups other than the root CPU cgroup overrides the effect of autogrouping.

       The autogroup feature groups only processes scheduled under non-real-time policies (SCHED_OTHER, SCHED_BATCH, and  SCHED_IDLE).   It  does  not  group  processes
       scheduled under real-time and deadline policies.  Those processes are scheduled according to the rules described earlier.

   The nice value and group scheduling
       When  scheduling  non-real-time  processes (i.e., those scheduled under the SCHED_OTHER, SCHED_BATCH, and SCHED_IDLE policies), the CFS scheduler employs a techā€
       nique known as "group scheduling", if the kernel was configured with the CONFIG_FAIR_GROUP_SCHED option (which is typical).

       Under group scheduling, threads are scheduled in "task groups".  Task groups have a hierarchical relationship, rooted under the initial task group on the system,
       known as the "root task group".  Task groups are formed in the following circumstances:

       *  All of the threads in a CPU cgroup form a task group.  The parent of this task group is the task group of the corresponding parent cgroup.

       *  If autogrouping is enabled, then all of the threads that are (implicitly) placed in an autogroup (i.e., the same session, as created by setsid(2)) form a task
          group.  Each new autogroup is thus a separate task group.  The root task group is the parent of all such autogroups.

       *  If autogrouping is enabled, then the root task group consists of all processes in the root CPU cgroup that were not otherwise implicitly placed into a new auā€
          togroup.

       *  If autogrouping is disabled, then the root task group consists of all processes in the root CPU cgroup.

       *  If  group  scheduling  was  disabled (i.e., the kernel was configured without CONFIG_FAIR_GROUP_SCHED), then all of the processes on the system are notionally
          placed in a single task group.

       Under group scheduling, a thread's nice value has an effect for scheduling decisions only relative to other threads in the same task group.  This has  some  surā€
       prising consequences in terms of the traditional semantics of the nice value on UNIX systems.  In particular, if autogrouping is enabled (which is the default in
       various distributions), then employing setpriority(2) or nice(1) on a process has an effect only for scheduling relative to other processes executed in the  same
       session (typically: the same terminal window).

       Conversely, for two processes that are (for example) the sole CPU-bound processes in different sessions (e.g., different terminal windows, each of whose jobs are
       tied to different autogroups), modifying the nice value of the process in one of the sessions has no effect in terms of the scheduler's decisions relative to the
       process in the other session.  A possibly useful workaround here is to use a command such as the following to modify the autogroup nice value for all of the proā€
       cesses in a terminal session:

           $ echo 10 > /proc/self/autogroup

   Real-time features in the mainline Linux kernel
       Since kernel version 2.6.18, Linux is gradually becoming equipped with real-time capabilities, most of which are derived from the former  realtime-preempt  patch
       set.   Until  the  patches have been completely merged into the mainline kernel, they must be installed to achieve the best real-time performance.  These patches
       are named:

           patch-kernelversion-rtpatchversion

       and can be downloaded from āŸØhttp://www.kernel.org/pub/linux/kernel/projects/rt/āŸ©.

       Without the patches and prior to their full inclusion into the mainline kernel, the kernel configuration offers only the  three  preemption  classes  CONFIG_PREā€
       EMPT_NONE,  CONFIG_PREEMPT_VOLUNTARY, and CONFIG_PREEMPT_DESKTOP which respectively provide no, some, and considerable reduction of the worst-case scheduling laā€
       tency.

       With the patches applied or after their full inclusion into the mainline kernel, the additional configuration item CONFIG_PREEMPT_RT becomes available.  If  this
       is  selected,  Linux is transformed into a regular real-time operating system.  The FIFO and RR scheduling policies are then used to run a thread with true real-
       time priority and a minimum worst-case scheduling latency.

NOTES
       The cgroups(7) CPU controller can be used to limit the CPU consumption of groups of processes.

       Originally, Standard Linux was intended as a general-purpose operating system being able to handle background processes, interactive applications, and  less  deā€
       manding  real-time  applications  (applications that need to usually meet timing deadlines).  Although the Linux kernel 2.6 allowed for kernel preemption and the
       newly introduced O(1) scheduler ensures that the time needed to schedule is fixed and deterministic irrespective of the number of active  tasks,  true  real-time
       computing was not possible up to kernel version 2.6.17.

SEE ALSO
       chcpu(1), chrt(1), lscpu(1), ps(1), taskset(1), top(1), getpriority(2), mlock(2), mlockall(2), munlock(2), munlockall(2), nice(2), sched_get_priority_max(2),
       sched_get_priority_min(2), sched_getaffinity(2), sched_getparam(2), sched_getscheduler(2), sched_rr_get_interval(2), sched_setaffinity(2), sched_setparam(2),
       sched_setscheduler(2), sched_yield(2), setpriority(2), pthread_getaffinity_np(3), pthread_getschedparam(3), pthread_setaffinity_np(3), sched_getcpu(3),
       capabilities(7), cpuset(7)

       Programming for the real world - POSIX.4 by Bill O. Gallmeister, O'Reilly & Associates, Inc., ISBN 1-56592-074-0.

       The        Linux        kernel        source        files         Documentation/scheduler/sched-deadline.txt,         Documentation/scheduler/sched-rt-group.txt,
       Documentation/scheduler/sched-design-CFS.txt, and Documentation/scheduler/sched-nice-design.txt

Linux                                                                          2021-03-22                                                                       SCHED(7)