πŸ’Ύ Archived View for gmi.noulin.net β€Ί man β€Ί man3 β€Ί fesetround.3.gmi captured on 2023-12-28 at 16:54:00. Gemini links have been rewritten to link to archived content

View Raw

More Information

⬅️ Previous capture (2023-09-08)

-=-=-=-=-=-=-

FENV(3)                                                                 Linux Programmer's Manual                                                                FENV(3)

NAME
       feclearexcept,  fegetexceptflag, feraiseexcept, fesetexceptflag, fetestexcept, fegetenv, fegetround, feholdexcept, fesetround, fesetenv, feupdateenv, feenableex‐
       cept, fedisableexcept, fegetexcept - floating-point rounding and exception handling

SYNOPSIS
       #include <fenv.h>

       int feclearexcept(int excepts);
       int fegetexceptflag(fexcept_t *flagp, int excepts);
       int feraiseexcept(int excepts);
       int fesetexceptflag(const fexcept_t *flagp, int excepts);
       int fetestexcept(int excepts);

       int fegetround(void);
       int fesetround(int rounding_mode);

       int fegetenv(fenv_t *envp);
       int feholdexcept(fenv_t *envp);
       int fesetenv(const fenv_t *envp);
       int feupdateenv(const fenv_t *envp);

       Link with -lm.

DESCRIPTION
       These eleven functions were defined in C99, and describe the handling of floating-point rounding and exceptions (overflow, zero-divide, etc.).

   Exceptions
       The divide-by-zero exception occurs when an operation on finite numbers produces infinity as exact answer.

       The overflow exception occurs when a result has to be represented as a floating-point number, but has (much) larger absolute  value  than  the  largest  (finite)
       floating-point number that is representable.

       The  underflow exception occurs when a result has to be represented as a floating-point number, but has smaller absolute value than the smallest positive normal‐
       ized floating-point number (and would lose much accuracy when represented as a denormalized number).

       The inexact exception occurs when the rounded result of an operation is not equal to the infinite precision result.  It may occur whenever overflow or  underflow
       occurs.

       The invalid exception occurs when there is no well-defined result for an operation, as for 0/0 or infinity - infinity or sqrt(-1).

   Exception handling
       Exceptions  are  represented in two ways: as a single bit (exception present/absent), and these bits correspond in some implementation-defined way with bit posi‐
       tions in an integer, and also as an opaque structure that may contain more information about the exception (perhaps the code address where it occurred).

       Each of the macros FE_DIVBYZERO, FE_INEXACT, FE_INVALID, FE_OVERFLOW, FE_UNDERFLOW is defined when the implementation supports handling of the corresponding  ex‐
       ception,  and  if  so  then defines the corresponding bit(s), so that one can call exception handling functions, for example, using the integer argument FE_OVER‐
       FLOW|FE_UNDERFLOW.  Other exceptions may be supported.  The macro FE_ALL_EXCEPT is the bitwise OR of all bits corresponding to supported exceptions.

       The feclearexcept() function clears the supported exceptions represented by the bits in its argument.

       The fegetexceptflag() function stores a representation of the state of the exception flags represented by the argument excepts in the opaque object *flagp.

       The feraiseexcept() function raises the supported exceptions represented by the bits in excepts.

       The fesetexceptflag() function sets the complete status for the exceptions represented by excepts to the value *flagp.  This value must have been obtained by  an
       earlier call of fegetexceptflag() with a last argument that contained all bits in excepts.

       The fetestexcept() function returns a word in which the bits are set that were set in the argument excepts and for which the corresponding exception is currently
       set.

   Rounding mode
       The rounding mode determines how the result of floating-point operations is treated when the result cannot be exactly represented in  the  significand.   Various
       rounding  modes  may  be  provided:  round to nearest (the default), round up (toward positive infinity), round down (toward negative infinity), and round toward
       zero.

       Each of the macros FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, and FE_TOWARDZERO is defined when the implementation supports  getting  and  setting  the  corresponding
       rounding direction.

       The fegetround() function returns the macro corresponding to the current rounding mode.

       The fesetround() function sets the rounding mode as specified by its argument and returns zero when it was successful.

       C99 and POSIX.1-2008 specify an identifier, FLT_ROUNDS, defined in <float.h>, which indicates the implementation-defined rounding behavior for floating-point ad‐
       dition.  This identifier has one of the following values:

       -1     The rounding mode is not determinable.

       0      Rounding is toward 0.

       1      Rounding is toward nearest number.

       2      Rounding is toward positive infinity.

       3      Rounding is toward negative infinity.

       Other values represent machine-dependent, nonstandard rounding modes.

       The value of FLT_ROUNDS should reflect the current rounding mode as set by fesetround() (but see BUGS).

   Floating-point environment
       The entire floating-point environment, including control modes and status flags, can be handled as one opaque object, of type fenv_t.  The default environment is
       denoted  by  FE_DFL_ENV (of type const fenv_t *).  This is the environment setup at program start and it is defined by ISO C to have round to nearest, all excep‐
       tions cleared and a nonstop (continue on exceptions) mode.

       The fegetenv() function saves the current floating-point environment in the object *envp.

       The feholdexcept() function does the same, then clears all exception flags, and sets a nonstop (continue on exceptions) mode, if available.  It returns zero when
       successful.

       The  fesetenv() function restores the floating-point environment from the object *envp.  This object must be known to be valid, for example, the result of a call
       to fegetenv() or feholdexcept() or equal to FE_DFL_ENV.  This call does not raise exceptions.

       The feupdateenv() function installs the floating-point environment represented by the object *envp, except that currently raised exceptions are not cleared.  Af‐
       ter  calling this function, the raised exceptions will be a bitwise OR of those previously set with those in *envp.  As before, the object *envp must be known to
       be valid.

RETURN VALUE
       These functions return zero on success and nonzero if an error occurred.

VERSIONS
       These functions first appeared in glibc in version 2.1.

ATTRIBUTES
       For an explanation of the terms used in this section, see attributes(7).

       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β”‚Interface                                                                                                                             β”‚ Attribute     β”‚ Value   β”‚
       β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
       β”‚feclearexcept(), fegetexceptflag(), feraiseexcept(), fesetexceptflag(), fetestexcept(), fegetround(), fesetround(), fegetenv(),       β”‚ Thread safety β”‚ MT-Safe β”‚
       β”‚feholdexcept(), fesetenv(), feupdateenv(), feenableexcept(), fedisableexcept(), fegetexcept()                                         β”‚               β”‚         β”‚
       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

CONFORMING TO
       IEC 60559 (IEC 559:1989), ANSI/IEEE 854, C99, POSIX.1-2001.

NOTES
   Glibc notes
       If  possible,  the GNU C Library defines a macro FE_NOMASK_ENV which represents an environment where every exception raised causes a trap to occur.  You can test
       for this macro using #ifdef.  It is defined only if _GNU_SOURCE is defined.  The C99 standard does not define a way to set individual bits in the  floating-point
       mask, for example, to trap on specific flags.  Since version 2.2, glibc supports the functions feenableexcept() and fedisableexcept() to set individual floating-
       point traps, and fegetexcept() to query the state.

       #define _GNU_SOURCE         /* See feature_test_macros(7) */
       #include <fenv.h>

       int feenableexcept(int excepts);
       int fedisableexcept(int excepts);
       int fegetexcept(void);

       The feenableexcept() and fedisableexcept() functions enable (disable) traps for each of the exceptions represented by excepts and return the previous set of  en‐
       abled exceptions when successful, and -1 otherwise.  The fegetexcept() function returns the set of all currently enabled exceptions.

BUGS
       C99  specifies  that  the  value  of  FLT_ROUNDS  should  reflect  changes to the current rounding mode, as set by fesetround().  Currently, this does not occur:
       FLT_ROUNDS always has the value 1.

SEE ALSO
       math_error(7)

Linux                                                                          2021-03-22                                                                        FENV(3)