💾 Archived View for spam.works › mirrors › textfiles › humor › rp.txt captured on 2023-11-14 at 10:17:27.

View Raw

More Information

⬅️ Previous capture (2023-06-14)

-=-=-=-=-=-=-


                      "REAL PROGRAMMERS DON'T USE PASCAL"
                                       
   Back in the good old days -- the "Golden Era" of computers, it was
   easy to separate the men from the boys (sometimes called "Real Men"
   and "Quiche Eaters" in the literature). During this period, the Real
   Men were the ones that understood computer programming, and the Quiche
   Eaters were the ones that didn't. A real computer programmer said
   things like "DO 10 I=1,10" and "ABEND" (they actually talked in
   capital letters, you understand), and the rest of the world said
   things like "computers are too complicated for me" and "I can't relate
   to computers -- they're so impersonal". (A previous work [1] points
   out that Real Men don't "relate" to anything, and aren't afraid of
   being impersonal.)
   
   But, as usual, times change. We are faced today with a world in which
   little old ladies can get computers in their microwave ovens,
   12-year-old kids can blow Real Men out of the water playing Asteroids
   and Pac-Man, and anyone can buy and even understand their very own
   Personal Computer. The Real Programmer is in danger of becoming
   extinct, of being replaced by high-school students with TRASH-80's.
   
   There is a clear need to point out the differences between the typical
   high-school junior Pac-Man player and a Real Programmer. If this
   difference is made clear, it will give these kids something to aspire
   to -- a role model, a Father Figure. It will also help explain to the
   employers of Real Programmers why it would be a mistake to replace the
   Real Programmers on their staff with 12-year-old Pac-Man players (at a
   considerable salary savings).
   
Languages

   The easiest way to tell a Real Programmer from the crowd is by the
   programming language he (or she) uses. Real Programmers use FORTRAN.
   Quiche Eaters use PASCAL. Nicklaus Wirth, the designer of PASCAL, gave
   a talk once at which he was asked "How do you pronounce your name?".
   He replied, "You can either call me by name, pronouncing it 'Veert',
   or call me by value, 'Worth'." One can tell immediately from this
   comment that Nicklaus Wirth is a Quiche Eater. The only parameter
   passing mechanism endorsed by Real Programmers is
   call-by-value-return, as implemented in the IBM\370 FORTRAN-G and H
   compilers. Real programmers don't need all these abstract concepts to
   get their jobs done -- they are perfectly happy with a keypunch, a
   FORTRAN IV compiler, and a beer.
   
     * Real Programmers do List Processing in FORTRAN.
     * Real Programmers do String Manipulation in FORTRAN.
     * Real Programmers do Accounting (if they do it at all) in FORTRAN.
     * Real Programmers do Artificial Intelligence programs in FORTRAN.
       
   If you can't do it in FORTRAN, do it in assembly language. If you
   can't do it in assembly language, it isn't worth doing.
   
Structured Programming

   The academics in computer science have gotten into the "structured
   programming" rut over the past several years. They claim that programs
   are more easily understood if the programmer uses some special
   language constructs and techniques. They don't all agree on exactly
   which constructs, of course, and the examples they use to show their
   particular point of view invariably fit on a single page of some
   obscure journal or another -- clearly not enough of an example to
   convince anyone. When I got out of school, I thought I was the best
   programmer in the world. I could write an unbeatable tic-tac-toe
   program, use five different computer languages, and create 1000-line
   programs that WORKED. (Really!) Then I got out into the Real World. My
   first task in the Real World was to read and understand a 200,000-line
   FORTRAN program, then speed it up by a factor of two. Any Real
   Programmer will tell you that all the Structured Coding in the world
   won't help you solve a problem like that -- it takes actual talent.
   Some quick observations on Real Programmers and Structured
   Programming:
   
     * Real Programmers aren't afraid to use GOTO's.
     * Real Programmers can write five-page-long DO loops without getting
       confused.
     * Real Programmers like Arithmetic IF statements -- they make the
       code more interesting.
     * Real Programmers write self-modifying code, especially if they can
       save 20 nanoseconds in the middle of a tight loop.
     * Real Programmers don't need comments -- the code is obvious.
     * Since FORTRAN doesn't have a structured IF, REPEAT ... UNTIL, or
       CASE statement, Real Programmers don't have to worry about not
       using them. Besides, they can be simulated when necessary using
       assigned GOTO's.
       
   Data Structures have also gotten a lot of press lately. Abstract Data
   Types, Structures, Pointers, Lists, and Strings have become popular in
   certain circles. Wirth (the above-mentioned Quiche Eater) actually
   wrote an entire book [2] contending that you could write a program
   based on data structures, instead of the other way around. As all Real
   Programmers know, the only useful data structure is the Array.
   Strings, lists, structures, sets -- these are all special cases of
   arrays and can be treated that way just as easily without messing up
   your programing language with all sorts of complications. The worst
   thing about fancy data types is that you have to declare them, and
   Real Programming Languages, as we all know, have implicit typing based
   on the first letter of the (six character) variable name.
   
Operating Systems

   What kind of operating system is used by a Real Programmer? CP/M? God
   forbid -- CP/M, after all, is basically a toy operating system. Even
   little old ladies and grade school students can understand and use
   CP/M.
   
   Unix is a lot more complicated of course -- the typical Unix hacker
   never can remember what the PRINT command is called this week -- but
   when it gets right down to it, Unix is a glorified video game. People
   don't do Serious Work on Unix systems: they send jokes around the
   world on UUCP-net and write adventure games and research papers.
   
   No, your Real Programmer uses OS\370. A good programmer can find and
   understand the description of the IJK305I error he just got in his JCL
   manual. A great programmer can write JCL without referring to the
   manual at all. A truly outstanding programmer can find bugs buried in
   a 6 megabyte core dump without using a hex calculator. (I have
   actually seen this done.)
   
   OS is a truly remarkable operating system. It's possible to destroy
   days of work with a single misplaced space, so alertness in the
   programming staff is encouraged. The best way to approach the system
   is through a keypunch. Some people claim there is a Time Sharing
   system that runs on OS\370, but after careful study I have come to the
   conclusion that they were mistaken.
   
Programming Tools

   What kind of tools does a Real Programmer use? In theory, a Real
   Programmer could run his programs by keying them into the front panel
   of the computer. Back in the days when computers had front panels,
   this was actually done occasionally. Your typical Real Programmer knew
   the entire bootstrap loader by memory in hex, and toggled it in
   whenever it got destroyed by his program. (Back then, memory was
   memory -- it didn't go away when the power went off. Today, memory
   either forgets things when you don't want it to, or remembers things
   long after they're better forgotten.) Legend has it that Seymore Cray,
   inventor of the Cray I supercomputer and most of Control Data's
   computers, actually toggled the first operating system for the CDC7600
   in on the front panel from memory when it was first powered on.
   Seymore, needless to say, is a Real Programmer.
   
   One of my favorite Real Programmers was a systems programmer for Texas
   Instruments. One day he got a long distance call from a user whose
   system had crashed in the middle of saving some important work. Jim
   was able to repair the damage over the phone, getting the user to
   toggle in disk I/O instructions at the front panel, repairing system
   tables in hex, reading register contents back over the phone. The
   moral of this story: while a Real Programmer usually includes a
   keypunch and lineprinter in his toolkit, he can get along with just a
   front panel and a telephone in emergencies.
   
   In some companies, text editing no longer consists of ten engineers
   standing in line to use an 029 keypunch. In fact, the building I work
   in doesn't contain a single keypunch. The Real Programmer in this
   situation has to do his work with a "text editor" program. Most
   systems supply several text editors to select from, and the Real
   Programmer must be careful to pick one that reflects his personal
   style. Many people believe that the best text editors in the world
   were written at Xerox Palo Alto Research Center for use on their Alto
   and Dorado computers [3]. Unfortunately, no Real Programmer would ever
   use a computer whose operating system is called SmallTalk, and would
   certainly not talk to the computer with a mouse.
   
   Some of the concepts in these Xerox editors have been incorporated
   into editors running on more reasonably named operating systems --
   EMACS and VI being two. The problem with these editors is that Real
   Programmers consider "what you see is what you get" to be just as bad
   a concept in Text Editors as it is in women. No the Real Programmer
   wants a "you asked for it, you got it" text editor -- complicated,
   cryptic, powerful, unforgiving, dangerous. TECO, to be precise.
   
   It has been observed that a TECO command sequence more closely
   resembles transmission line noise than readable text [4]. One of the
   more entertaining games to play with TECO is to type your name in as a
   command line and try to guess what it does. Just about any possible
   typing error while talking with TECO will probably destroy your
   program, or even worse -- introduce subtle and mysterious bugs in a
   once working subroutine.
   
   For this reason, Real Programmers are reluctant to actually edit a
   program that is close to working. They find it much easier to just
   patch the binary object code directly, using a wonderful program
   called SUPERZAP (or its equivalent on non-IBM machines). This works so
   well that many working programs on IBM systems bear no relation to the
   original FORTRAN code. In many cases, the original source code is no
   longer available. When it comes time to fix a program like this, no
   manager would even think of sending anything less than a Real
   Programmer to do the job -- no Quiche Eating structured programmer
   would even know where to start. This is called "job security".
   
   Some programming tools NOT used by Real Programmers:
   
     * FORTRAN preprocessors like MORTRAN and RATFOR. The Cuisinarts of
       programming -- great for making Quiche. See comments above on
       structured programming.
     * Source language debuggers. Real Programmers can read core dumps.
     * Compilers with array bounds checking. They stifle creativity,
       destroy most of the interesting uses for EQUIVALENCE, and make it
       impossible to modify the operating system code with negative
       subscripts. Worst of all, bounds checking is inefficient.
     * Source code maintenance systems. A Real Programmer keeps his code
       locked up in a card file, because it implies that its owner cannot
       leave his important programs unguarded [5].
       
The Real Programmer at Work

   Where does the typical Real Programmer work? What kind of programs are
   worthy of the efforts of so talented an individual? You can be sure
   that no Real Programmer would be caught dead writing
   accounts-receivable programs in COBOL, or sorting mailing lists for
   People magazine. A Real Programmer wants tasks of earth-shaking
   importance (literally!).
   
     * Real Programmers work for Los Alamos National Laboratory, writing
       atomic bomb simulations to run on Cray I supercomputers.
     * Real Programmers work for the National Security Agency, decoding
       Russian transmissions.
     * It was largely due to the efforts of thousands of Real Programmers
       working for NASA that our boys got to the moon and back before the
       Russkies.
     * Real Programmers are at work for Boeing designing the operating
       systems for cruise missiles.
       
   Some of the most awesome Real Programmers of all work at the Jet
   Propulsion Laboratory in California. Many of them know the entire
   operating system of the Pioneer and Voyager spacecraft by heart. With
   a combination of large ground-based FORTRAN programs and small
   spacecraft-based assembly language programs, they are able to do
   incredible feats of navigation and improvisation -- hitting
   ten-kilometer wide windows at Saturn after six years in space,
   repairing or bypassing damaged sensor platforms, radios, and
   batteries. Allegedly, one Real Programmer managed to tuck a
   pattern-matching program into a few hundred bytes of unused memory in
   a Voyager spacecraft that searched for, located, and photographed a
   new moon of Jupiter.
   
   The current plan for the Galileo spacecraft is to use a gravity assist
   trajectory past Mars on the way to Jupiter. This trajectory passes
   within 80 +/-3 kilometers of the surface of Mars. Nobody is going to
   trust a PASCAL program (or a PASCAL programmer) for navigation to
   these tolerances.
   
   As you can tell, many of the world's Real Programmers work for the
   U.S. Government -- mainly the Defense Department. This is as it should
   be. Recently, however, a black cloud has formed on the Real Programmer
   horizon. It seems that some highly placed Quiche Eaters at the Defense
   Department decided that all Defense programs should be written in some
   grand unified language called "ADA" ((C), DoD). For a while, it seemed
   that ADA was destined to become a language that went against all the
   precepts of Real Programming -- a language with structure, a language
   with data types, strong typing, and semicolons. In short, a language
   designed to cripple the creativity of the typical Real Programmer.
   Fortunately, the language adopted by DoD has enough interesting
   features to make it approachable -- it's incredibly complex, includes
   methods for messing with the operating system and rearranging memory,
   and Edsgar Dijkstra doesn't like it [6]. (Dijkstra, as I'm sure you
   know, was the author of "GoTos Considered Harmful" -- a landmark work
   in programming methodology, applauded by PASCAL programmers and Quiche
   Eaters alike.) Besides, the determined Real Programmer can write
   FORTRAN programs in any language.
   
   The Real Programmer might compromise his principles and work on
   something slightly more trivial than the destruction of life as we
   know it, providing there's enough money in it. There are several Real
   Programmers building video games at Atari, for example. (But not
   playing them -- a Real Programmer knows how to beat the machine every
   time: no challenge in that.) Everyone working at LucasFilm is a Real
   Programmer. (It would be crazy to turn down the money of fifty million
   Star Trek fans.) The proportion of Real Programmers in Computer
   Graphics is somewhat lower than the norm, mostly because nobody has
   found a use for computer graphics yet. On the other hand, all computer
   graphics is done in FORTRAN, so there are a fair number of people
   doing graphics in order to avoid having to write COBOL programs.
   
The Real Programmer at Play

   Generally, the Real Programmer plays the same way he works -- with
   computers. He is constantly amazed that his employer actually pays him
   to do what he would be doing for fun anyway (although he is careful
   not to express this opinion out loud). Occasionally, the Real
   Programmer does step out of the office for a breath of fresh air and a
   beer or two. Some tips on recognizing Real Programmers away from the
   computer room:
   
     * At a party, the Real Programmers are the ones in the corner
       talking about operating system security and how to get around it.
     * At a football game, the Real Programmer is the one comparing the
       plays against his simulations printed on 11 by 14 fanfold paper.
     * At the beach, the Real Programmer is the one drawing flowcharts in
       the sand.
     * At a funeral, the Real Programmer is the one saying "Poor George.
       And he almost had the sort routine working before the coronary."
     * In a grocery store, the Real Programmer is the one who insists on
       running the cans past the laser checkout scanner himself, because
       he never could trust keypunch operators to get it right the first
       time.
       
The Real Programmer's Natural Habitat

   What sort of environment does the Real Programmer function best in?
   This is an important question for the managers of Real Programmers.
   Considering the amount of money it costs to keep one on the staff,
   it's best to put him (or her) in an environment where he can get his
   work done.
   
   The typical Real Programmer lives in front of a computer terminal.
   Surrounding this terminal are:
   
     * Listings of all programs the Real Programmer has ever worked on,
       piled in roughly chronological order on every flat surface in the
       office.
     * Some half-dozen or so partly filled cups of cold coffee.
       Occasionally, there will be cigarette butts floating in the
       coffee. In some cases, the cups will contain Orange Crush.
     * Unless he is very good, there will be copies of the OS JCL manual
       and the Principles of Operation open to some particularly
       interesting pages.
     * Taped to the wall is a line-printer Snoopy calendar for the year
       1969.
     * Strewn about the floor are several wrappers for peanut butter
       filled cheese bars -- the type that are made pre-stale at the
       bakery so they can't get any worse while waiting in the vending
       machine.
     * Hiding in the top left-hand drawer of the desk is a stash of
       double-stuff Oreos for special occasions.
     * Underneath the Oreos is a flowcharting template, left there by the
       previous occupant of the office. (Real Programmers write programs,
       not documentation. Leave that to the maintenance people.)
       
   The Real Programmer is capable of working 30, 40, even 50 hours at a
   stretch, under intense pressure. In fact, he prefers it that way. Bad
   response time doesn't bother the Real Programmer -- it gives him a
   chance to catch a little sleep between compiles. If there is not
   enough schedule pressure on the Real Programmer, he tends to make
   things more challenging by working on some small but interesting part
   of the problem for the first nine weeks, then finishing the rest in
   the last week, in two or three 50-hour marathons. This not only
   impresses the hell out of his manager, who was despairing of ever
   getting the project done on time, but creates a convenient excuse for
   not doing the documentation. In general:
   
     * No Real Programmer works 9 to 5 (unless it's the ones at night).
     * Real Programmers don't wear neckties.
     * Real Programmers don't wear high-heeled shoes.
     * Real Programmers arrive at work in time for lunch [9].
     * A Real Programmer might or might not know his wife's name. He
       does, however, know the entire ASCII (or EBCDIC) code table.
     * Real Programmers don't know how to cook. Grocery stores aren't
       open at three in the morning. Real Programmers survive on Twinkies
       and coffee.
       
The Future

   What of the future? It is a matter of some concern to Real Programmers
   that the latest generation of computer programmers are not being
   brought up with the same outlook on life as their elders. Many of them
   have never seen a computer with a front panel. Hardly anyone
   graduating from school these days can do hex arithmetic without a
   calculator. College graduates these days are soft -- protected from
   the realities of programming by source level debuggers, text editors
   that count parentheses, and "user friendly" operating systems. Worst
   of all, some of these alleged "computer scientists" manage to get
   degrees without ever learning FORTRAN! Are we destined to become an
   industry of Unix hackers and PASCAL programmers?
   
   From my experience, I can only report that the future is bright for
   Real Programmers everywhere. Neither OS\370 nor FORTRAN show any signs
   of dying out, despite all the efforts of PASCAL programmers the world
   over. Even more subtle tricks, like adding structured coding
   constructs to FORTRAN have failed. Oh sure, some computer vendors have
   come out with FORTRAN 77 compilers, but every one of them has a way of
   converting itself back into a FORTRAN 66 compiler at the drop of an
   option card -- to compile DO loops like God meant them to be.
   
   Even Unix might not be as bad on Real Programmers as it once was. The
   latest release of Unix has the potential of an operating system worthy
   of any Real Programmer -- two different and subtly incompatible user
   interfaces, an arcane and complicated teletype driver, virtual memory.
   If you ignore the fact that it's "structured", even 'C' programming
   can be appreciated by the Real Programmer: after all, there's no type
   checking, variable names are seven (ten? eight?) characters long, and
   the added bonus of the Pointer data type is thrown in -- like having
   the best parts of FORTRAN and assembly language in one place. (Not to
   mention some of the more creative uses for #define.)
   
   No, the future isn't all that bad. Why, in the past few years, the
   popular press has even commented on the bright new crop of computer
   nerds and hackers ([7] and [8]) leaving places like Stanford and
   M.I.T. for the Real World. From all evidence, the spirit of Real
   Programming lives on in these young men and women. As long as there
   are ill-defined goals, bizarre bugs, and unrealistic schedules, there
   will be Real Programmers willing to jump in and Solve The Problem,
   saving the documentation for later. Long live FORTRAN!
   
Acknowledgement

   I would like to thank Jan E., Dave S., Rich G., Rich E., for their
   help in characterizing the Real Programmer, Heather B. for the
   illustration, Kathy E. for putting up with it, and atd!avsdS:mark for
   the initial inspiration.
   
References

   [1] Feirstein, B., "Real Men don't Eat Quiche", New York, Pocket
   Books, 1982.
   
   [2] Wirth, N., "Algorithms + Data Structures = Programs", Prentice
   Hall, 1976.
   
   [3] Ilson, R., "Recent Research in Text Processing", IEEE Trans. Prof.
   Commun., Vol. PC-23, No. 4, Dec. 4, 1980.
   
   [4] Finseth, C., "Theory and Practice of Text Editors -- or -- a
   Cookbook for an EMACS", B.S. Thesis, MIT/LCS/TM-165, Massachusetts
   Institute of Technology, May 1980.
   
   [5] Weinberg, G., "The Psychology of Computer Programming", New York,
   Van Nostrand Reinhold, 1971, p. 110.
   
   [6] Dijkstra, E., "On the GREEN language submitted to the DoD",
   Sigplan notices, Vol. 3 No. 10, Oct 1978.
   
   [7] Rose, Frank, "Joy of Hacking", Science 82, Vol. 3 No. 9, Nov 82,
   pp. 58-66.
   
   [8] "The Hacker Papers", Psychology Today, August 1980.
   
   [9] sdcarl!lin, "Real Programmers", UUCP-net, Thu Oct 21 16:55:16 1982
   
   
     _________________________________________________________________
   
   
    Last updated on Fri Jul 21 10:11:38 1995
    Michael Stillwell / mist@yoyo.cc.monash.edu.au
    
   
     _________________________________________________________________
   
   Disclaimer:
   This is a personal page published by the author. The ideas and
   information expressed on it have not been approved or authorised by
   Monash University either explicitly or impliedly. In no event shall
   Monash University be liable for any damages whatsoever resulting from
   any action arising in connection with the use of this information or
   its publication, including any action for infringement of copyright or
   defamation. 
     _________________________________________________________________