💾 Archived View for gmi.noulin.net › man › man7 › glob.7.gmi captured on 2023-11-14 at 09:58:05. Gemini links have been rewritten to link to archived content

View Raw

More Information

⬅️ Previous capture (2022-06-12)

-=-=-=-=-=-=-

GLOB(7)                                                                 Linux Programmer's Manual                                                                GLOB(7)

NAME
       glob - globbing pathnames

DESCRIPTION
       Long ago, in UNIX V6, there was a program /etc/glob that would expand wildcard patterns.  Soon afterward this became a shell built-in.

       These days there is also a library routine glob(3) that will perform this function for a user program.

       The rules are as follows (POSIX.2, 3.13).

   Wildcard matching
       A string is a wildcard pattern if it contains one of the characters '?', '*', or '['.  Globbing is the operation that expands a wildcard pattern into the list of
       pathnames matching the pattern.  Matching is defined by:

       A '?' (not between brackets) matches any single character.

       A '*' (not between brackets) matches any string, including the empty string.

       Character classes

       An expression "[...]" where the first character after the leading '[' is not an '!' matches a single character, namely any of  the  characters  enclosed  by  the
       brackets.   The  string  enclosed  by  the  brackets cannot be empty; therefore ']' can be allowed between the brackets, provided that it is the first character.
       (Thus, "[][!]" matches the three characters '[', ']', and '!'.)

       Ranges

       There is one special convention: two characters separated by '-' denote a range.  (Thus, "[A-Fa-f0-9]" is equivalent to "[ABCDEFabcdef0123456789]".)  One may in‐
       clude  '-'  in its literal meaning by making it the first or last character between the brackets.  (Thus, "[]-]" matches just the two characters ']' and '-', and
       "[--0]" matches the three characters '-', '.', '0', since '/' cannot be matched.)

       Complementation

       An expression "[!...]" matches a single character, namely any character that is not matched by the expression obtained by removing the first '!' from it.  (Thus,
       "[!]a-]" matches any single character except ']', 'a', and '-'.)

       One  can  remove  the  special meaning of '?', '*', and '[' by preceding them by a backslash, or, in case this is part of a shell command line, enclosing them in
       quotes.  Between brackets these characters stand for themselves.  Thus, "[[?*\]" matches the four characters '[', '?', '*', and '\'.

   Pathnames
       Globbing is applied on each of the components of a pathname separately.  A '/' in a pathname cannot be matched by a '?' or '*'  wildcard,  or  by  a  range  like
       "[.-0]".  A range containing an explicit '/' character is syntactically incorrect.  (POSIX requires that syntactically incorrect patterns are left unchanged.)

       If  a  filename starts with a '.', this character must be matched explicitly.  (Thus, rm * will not remove .profile, and tar c * will not archive all your files;
       tar c . is better.)

   Empty lists
       The nice and simple rule given above: "expand a wildcard pattern into the list of matching pathnames" was the original UNIX definition.  It allowed one  to  have
       patterns that expand into an empty list, as in

           xv -wait 0 *.gif *.jpg

       where  perhaps no *.gif files are present (and this is not an error).  However, POSIX requires that a wildcard pattern is left unchanged when it is syntactically
       incorrect, or the list of matching pathnames is empty.  With bash one can force the classical behavior using this command:

           shopt -s nullglob

       (Similar problems occur elsewhere.  For example, where old scripts have

           rm `find . -name "*~"`

       new scripts require

           rm -f nosuchfile `find . -name "*~"`

       to avoid error messages from rm called with an empty argument list.)

NOTES
   Regular expressions
       Note that wildcard patterns are not regular expressions, although they are a bit similar.  First of all, they match filenames, rather than  text,  and  secondly,
       the conventions are not the same: for example, in a regular expression '*' means zero or more copies of the preceding thing.

       Now  that  regular expressions have bracket expressions where the negation is indicated by a '^', POSIX has declared the effect of a wildcard pattern "[^...]" to
       be undefined.

   Character classes and internationalization
       Of course ranges were originally meant to be ASCII ranges, so that "[ -%]" stands for "[ !"#$%]" and "[a-z]" stands for "any lowercase letter".  Some UNIX imple‐
       mentations generalized this so that a range X-Y stands for the set of characters with code between the codes for X and for Y.  However, this requires the user to
       know the character coding in use on the local system, and moreover, is not convenient if the collating sequence for the local alphabet differs from the  ordering
       of  the  character  codes.   Therefore, POSIX extended the bracket notation greatly, both for wildcard patterns and for regular expressions.  In the above we saw
       three types of items that can occur in a bracket expression: namely (i) the negation, (ii) explicit single characters, and (iii) ranges.  POSIX specifies  ranges
       in an internationally more useful way and adds three more types:

       (iii)  Ranges  X-Y  comprise  all characters that fall between X and Y (inclusive) in the current collating sequence as defined by the LC_COLLATE category in the
       current locale.

       (iv) Named character classes, like

       [:alnum:]  [:alpha:]  [:blank:]  [:cntrl:]
       [:digit:]  [:graph:]  [:lower:]  [:print:]
       [:punct:]  [:space:]  [:upper:]  [:xdigit:]

       so that one can say "[[:lower:]]" instead of "[a-z]", and have things work in Denmark, too, where there are three letters past 'z' in the alphabet.  These  char‐
       acter classes are defined by the LC_CTYPE category in the current locale.

       (v)  Collating  symbols, like "[.ch.]" or "[.a-acute.]", where the string between "[." and ".]" is a collating element defined for the current locale.  Note that
       this may be a multicharacter element.

       (vi) Equivalence class expressions, like "[=a=]", where the string between "[=" and "=]" is any collating element from its equivalence class, as defined for  the
       current locale.  For example, "[[=a=]]" might be equivalent to "[aáaäâ]", that is, to "[a[.a-acute.][.a-grave.][.a-umlaut.][.a-circumflex.]]".

SEE ALSO
       sh(1), fnmatch(3), glob(3), locale(7), regex(7)

Linux                                                                          2020-08-13                                                                        GLOB(7)