💾 Archived View for gemini.rmf-dev.com › repo › Vaati › mz › files › 29f18e10b17151d7112a2b6358d6af8… captured on 2023-11-04 at 12:31:35. Gemini links have been rewritten to link to archived content
⬅️ Previous capture (2023-09-08)
-=-=-=-=-=-=-
0 /*
1 * This is an implementation of wcwidth() and wcswidth() (defined in
2 * IEEE Std 1002.1-2001) for Unicode.
3 *
4 * http://www.opengroup.org/onlinepubs/007904975/functions/wcwidth.html
5 * http://www.opengroup.org/onlinepubs/007904975/functions/wcswidth.html
6 *
7 * In fixed-width output devices, Latin characters all occupy a single
8 * "cell" position of equal width, whereas ideographic CJK characters
9 * occupy two such cells. Interoperability between terminal-line
10 * applications and (teletype-style) character terminals using the
11 * UTF-8 encoding requires agreement on which character should advance
12 * the cursor by how many cell positions. No established formal
13 * standards exist at present on which Unicode character shall occupy
14 * how many cell positions on character terminals. These routines are
15 * a first attempt of defining such behavior based on simple rules
16 * applied to data provided by the Unicode Consortium.
17 *
18 * For some graphical characters, the Unicode standard explicitly
19 * defines a character-cell width via the definition of the East Asian
20 * FullWidth (F), Wide (W), Half-width (H), and Narrow (Na) classes.
21 * In all these cases, there is no ambiguity about which width a
22 * terminal shall use. For characters in the East Asian Ambiguous (A)
23 * class, the width choice depends purely on a preference of backward
24 * compatibility with either historic CJK or Western practice.
25 * Choosing single-width for these characters is easy to justify as
26 * the appropriate long-term solution, as the CJK practice of
27 * displaying these characters as double-width comes from historic
28 * implementation simplicity (8-bit encoded characters were displayed
29 * single-width and 16-bit ones double-width, even for Greek,
30 * Cyrillic, etc.) and not any typographic considerations.
31 *
32 * Much less clear is the choice of width for the Not East Asian
33 * (Neutral) class. Existing practice does not dictate a width for any
34 * of these characters. It would nevertheless make sense
35 * typographically to allocate two character cells to characters such
36 * as for instance EM SPACE or VOLUME INTEGRAL, which cannot be
37 * represented adequately with a single-width glyph. The following
38 * routines at present merely assign a single-cell width to all
39 * neutral characters, in the interest of simplicity. This is not
40 * entirely satisfactory and should be reconsidered before
41 * establishing a formal standard in this area. At the moment, the
42 * decision which Not East Asian (Neutral) characters should be
43 * represented by double-width glyphs cannot yet be answered by
44 * applying a simple rule from the Unicode database content. Setting
45 * up a proper standard for the behavior of UTF-8 character terminals
46 * will require a careful analysis not only of each Unicode character,
47 * but also of each presentation form, something the author of these
48 * routines has avoided to do so far.
49 *
50 * http://www.unicode.org/unicode/reports/tr11/
51 *
52 * Markus Kuhn -- 2007-05-26 (Unicode 5.0)
53 *
54 * Permission to use, copy, modify, and distribute this software
55 * for any purpose and without fee is hereby granted. The author
56 * disclaims all warranties with regard to this software.
57 *
58 * Latest version: http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c
59 */
60 /* Original file modified to add a list of modern full-width characters */
61
62 #include <wchar.h>
63
64 struct interval {
65 int first;
66 int last;
67 };
68
69 /* auxiliary function for binary search in interval table */
70 static int bisearch(wchar_t ucs, const struct interval *table, int max) {
71 int min = 0;
72 int mid;
73
74 if (ucs < table[0].first || ucs > table[max].last)
75 return 0;
76 while (max >= min) {
77 mid = (min + max) / 2;
78 if (ucs > table[mid].last)
79 min = mid + 1;
80 else if (ucs < table[mid].first)
81 max = mid - 1;
82 else
83 return 1;
84 }
85
86 return 0;
87 }
88
89
90 /* The following two functions define the column width of an ISO 10646
91 * character as follows:
92 *
93 * - The null character (U+0000) has a column width of 0.
94 *
95 * - Other C0/C1 control characters and DEL will lead to a return
96 * value of -1.
97 *
98 * - Non-spacing and enclosing combining characters (general
99 * category code Mn or Me in the Unicode database) have a
100 * column width of 0.
101 *
102 * - SOFT HYPHEN (U+00AD) has a column width of 1.
103 *
104 * - Other format characters (general category code Cf in the Unicode
105 * database) and ZERO WIDTH SPACE (U+200B) have a column width of 0.
106 *
107 * - Hangul Jamo medial vowels and final consonants (U+1160-U+11FF)
108 * have a column width of 0.
109 *
110 * - Spacing characters in the East Asian Wide (W) or East Asian
111 * Full-width (F) category as defined in Unicode Technical
112 * Report #11 have a column width of 2.
113 *
114 * - All remaining characters (including all printable
115 * ISO 8859-1 and WGL4 characters, Unicode control characters,
116 * etc.) have a column width of 1.
117 *
118 * This implementation assumes that wchar_t characters are encoded
119 * in ISO 10646.
120 */
121
122 int mk_wcwidth(wchar_t ucs)
123 {
124 static const struct interval doublewith[] = {
125 {0x1100, 0x115F}, {0x231A, 0x231B}, {0x2329, 0x232A},
126 {0x23E9, 0x23EC}, {0x23F0, 0x23F0}, {0x23F3, 0x23F3},
127 {0x25FD, 0x25FE}, {0x2614, 0x2615}, {0x2648, 0x2653},
128 {0x267F, 0x267F}, {0x2693, 0x2693}, {0x26A1, 0x26A1},
129 {0x26AA, 0x26AB}, {0x26BD, 0x26BE}, {0x26C4, 0x26C5},
130 {0x26CE, 0x26CE}, {0x26D4, 0x26D4}, {0x26EA, 0x26EA},
131 {0x26F2, 0x26F3}, {0x26F5, 0x26F5}, {0x26FA, 0x26FA},
132 {0x26FD, 0x26FD}, {0x2705, 0x2705}, {0x270A, 0x270B},
133 {0x2728, 0x2728}, {0x274C, 0x274C}, {0x274E, 0x274E},
134 {0x2753, 0x2755}, {0x2757, 0x2757}, {0x2795, 0x2797},
135 {0x27B0, 0x27B0}, {0x27BF, 0x27BF}, {0x2B1B, 0x2B1C},
136 {0x2B50, 0x2B50}, {0x2B55, 0x2B55}, {0x2E80, 0x2E99},
137 {0x2E9B, 0x2EF3}, {0x2F00, 0x2FD5}, {0x2FF0, 0x2FFB},
138 {0x3000, 0x303E}, {0x3041, 0x3096}, {0x3099, 0x30FF},
139 {0x3105, 0x312F}, {0x3131, 0x318E}, {0x3190, 0x31E3},
140 {0x31F0, 0x321E}, {0x3220, 0x3247}, {0x3250, 0x4DBF},
141 {0x4E00, 0xA48C}, {0xA490, 0xA4C6}, {0xA960, 0xA97C},
142 {0xAC00, 0xD7A3}, {0xF900, 0xFAFF}, {0xFE10, 0xFE19},
143 {0xFE30, 0xFE52}, {0xFE54, 0xFE66}, {0xFE68, 0xFE6B},
144 {0xFF01, 0xFF60}, {0xFFE0, 0xFFE6}, {0x16FE0, 0x16FE4},
145 {0x16FF0, 0x16FF1}, {0x17000, 0x187F7}, {0x18800, 0x18CD5},
146 {0x18D00, 0x18D08}, {0x1B000, 0x1B11E}, {0x1B150, 0x1B152},
147 {0x1B164, 0x1B167}, {0x1B170, 0x1B2FB}, {0x1F004, 0x1F004},
148 {0x1F0CF, 0x1F0CF}, {0x1F18E, 0x1F18E}, {0x1F191, 0x1F19A},
149 {0x1F200, 0x1F202}, {0x1F210, 0x1F23B}, {0x1F240, 0x1F248},
150 {0x1F250, 0x1F251}, {0x1F260, 0x1F265}, {0x1F300, 0x1F320},
151 {0x1F32D, 0x1F335}, {0x1F337, 0x1F37C}, {0x1F37E, 0x1F393},
152 {0x1F3A0, 0x1F3CA}, {0x1F3CF, 0x1F3D3}, {0x1F3E0, 0x1F3F0},
153 {0x1F3F4, 0x1F3F4}, {0x1F3F8, 0x1F43E}, {0x1F440, 0x1F440},
154 {0x1F442, 0x1F4FC}, {0x1F4FF, 0x1F53D}, {0x1F54B, 0x1F54E},
155 {0x1F550, 0x1F567}, {0x1F57A, 0x1F57A}, {0x1F595, 0x1F596},
156 {0x1F5A4, 0x1F5A4}, {0x1F5FB, 0x1F64F}, {0x1F680, 0x1F6C5},
157 {0x1F6CC, 0x1F6CC}, {0x1F6D0, 0x1F6D2}, {0x1F6D5, 0x1F6D7},
158 {0x1F6EB, 0x1F6EC}, {0x1F6F4, 0x1F6FC}, {0x1F7E0, 0x1F7EB},
159 {0x1F90C, 0x1F93A}, {0x1F93C, 0x1F945}, {0x1F947, 0x1F978},
160 {0x1F97A, 0x1F9CB}, {0x1F9CD, 0x1F9FF}, {0x1FA70, 0x1FA74},
161 {0x1FA78, 0x1FA7A}, {0x1FA80, 0x1FA86}, {0x1FA90, 0x1FAA8},
162 {0x1FAB0, 0x1FAB6}, {0x1FAC0, 0x1FAC2}, {0x1FAD0, 0x1FAD6},
163 {0x20000, 0x2FFFD}, {0x30000, 0x3FFFD},
164 };
165 /* sorted list of non-overlapping intervals of non-spacing characters */
166 /* generated by "uniset +cat=Me +cat=Mn +cat=Cf -00AD +1160-11FF +200B c" */
167 static const struct interval combining[] = {
168 { 0x0300, 0x036F }, { 0x0483, 0x0486 }, { 0x0488, 0x0489 },
169 { 0x0591, 0x05BD }, { 0x05BF, 0x05BF }, { 0x05C1, 0x05C2 },
170 { 0x05C4, 0x05C5 }, { 0x05C7, 0x05C7 }, { 0x0600, 0x0603 },
171 { 0x0610, 0x0615 }, { 0x064B, 0x065E }, { 0x0670, 0x0670 },
172 { 0x06D6, 0x06E4 }, { 0x06E7, 0x06E8 }, { 0x06EA, 0x06ED },
173 { 0x070F, 0x070F }, { 0x0711, 0x0711 }, { 0x0730, 0x074A },
174 { 0x07A6, 0x07B0 }, { 0x07EB, 0x07F3 }, { 0x0901, 0x0902 },
175 { 0x093C, 0x093C }, { 0x0941, 0x0948 }, { 0x094D, 0x094D },
176 { 0x0951, 0x0954 }, { 0x0962, 0x0963 }, { 0x0981, 0x0981 },
177 { 0x09BC, 0x09BC }, { 0x09C1, 0x09C4 }, { 0x09CD, 0x09CD },
178 { 0x09E2, 0x09E3 }, { 0x0A01, 0x0A02 }, { 0x0A3C, 0x0A3C },
179 { 0x0A41, 0x0A42 }, { 0x0A47, 0x0A48 }, { 0x0A4B, 0x0A4D },
180 { 0x0A70, 0x0A71 }, { 0x0A81, 0x0A82 }, { 0x0ABC, 0x0ABC },
181 { 0x0AC1, 0x0AC5 }, { 0x0AC7, 0x0AC8 }, { 0x0ACD, 0x0ACD },
182 { 0x0AE2, 0x0AE3 }, { 0x0B01, 0x0B01 }, { 0x0B3C, 0x0B3C },
183 { 0x0B3F, 0x0B3F }, { 0x0B41, 0x0B43 }, { 0x0B4D, 0x0B4D },
184 { 0x0B56, 0x0B56 }, { 0x0B82, 0x0B82 }, { 0x0BC0, 0x0BC0 },
185 { 0x0BCD, 0x0BCD }, { 0x0C3E, 0x0C40 }, { 0x0C46, 0x0C48 },
186 { 0x0C4A, 0x0C4D }, { 0x0C55, 0x0C56 }, { 0x0CBC, 0x0CBC },
187 { 0x0CBF, 0x0CBF }, { 0x0CC6, 0x0CC6 }, { 0x0CCC, 0x0CCD },
188 { 0x0CE2, 0x0CE3 }, { 0x0D41, 0x0D43 }, { 0x0D4D, 0x0D4D },
189 { 0x0DCA, 0x0DCA }, { 0x0DD2, 0x0DD4 }, { 0x0DD6, 0x0DD6 },
190 { 0x0E31, 0x0E31 }, { 0x0E34, 0x0E3A }, { 0x0E47, 0x0E4E },
191 { 0x0EB1, 0x0EB1 }, { 0x0EB4, 0x0EB9 }, { 0x0EBB, 0x0EBC },
192 { 0x0EC8, 0x0ECD }, { 0x0F18, 0x0F19 }, { 0x0F35, 0x0F35 },
193 { 0x0F37, 0x0F37 }, { 0x0F39, 0x0F39 }, { 0x0F71, 0x0F7E },
194 { 0x0F80, 0x0F84 }, { 0x0F86, 0x0F87 }, { 0x0F90, 0x0F97 },
195 { 0x0F99, 0x0FBC }, { 0x0FC6, 0x0FC6 }, { 0x102D, 0x1030 },
196 { 0x1032, 0x1032 }, { 0x1036, 0x1037 }, { 0x1039, 0x1039 },
197 { 0x1058, 0x1059 }, { 0x1160, 0x11FF }, { 0x135F, 0x135F },
198 { 0x1712, 0x1714 }, { 0x1732, 0x1734 }, { 0x1752, 0x1753 },
199 { 0x1772, 0x1773 }, { 0x17B4, 0x17B5 }, { 0x17B7, 0x17BD },
200 { 0x17C6, 0x17C6 }, { 0x17C9, 0x17D3 }, { 0x17DD, 0x17DD },
201 { 0x180B, 0x180D }, { 0x18A9, 0x18A9 }, { 0x1920, 0x1922 },
202 { 0x1927, 0x1928 }, { 0x1932, 0x1932 }, { 0x1939, 0x193B },
203 { 0x1A17, 0x1A18 }, { 0x1B00, 0x1B03 }, { 0x1B34, 0x1B34 },
204 { 0x1B36, 0x1B3A }, { 0x1B3C, 0x1B3C }, { 0x1B42, 0x1B42 },
205 { 0x1B6B, 0x1B73 }, { 0x1DC0, 0x1DCA }, { 0x1DFE, 0x1DFF },
206 { 0x200B, 0x200F }, { 0x202A, 0x202E }, { 0x2060, 0x2063 },
207 { 0x206A, 0x206F }, { 0x20D0, 0x20EF }, { 0x302A, 0x302F },
208 { 0x3099, 0x309A }, { 0xA806, 0xA806 }, { 0xA80B, 0xA80B },
209 { 0xA825, 0xA826 }, { 0xFB1E, 0xFB1E }, { 0xFE00, 0xFE0F },
210 { 0xFE20, 0xFE23 }, { 0xFEFF, 0xFEFF }, { 0xFFF9, 0xFFFB },
211 { 0x10A01, 0x10A03 }, { 0x10A05, 0x10A06 }, { 0x10A0C, 0x10A0F },
212 { 0x10A38, 0x10A3A }, { 0x10A3F, 0x10A3F }, { 0x1D167, 0x1D169 },
213 { 0x1D173, 0x1D182 }, { 0x1D185, 0x1D18B }, { 0x1D1AA, 0x1D1AD },
214 { 0x1D242, 0x1D244 }, { 0xE0001, 0xE0001 }, { 0xE0020, 0xE007F },
215 { 0xE0100, 0xE01EF }
216 };
217
218 /* test for 8-bit control characters */
219 if (ucs == 0)
220 return 0;
221 if (ucs < 32 || (ucs >= 0x7f && ucs < 0xa0))
222 return -1;
223
224 /* binary search in table of non-spacing characters */
225 if (bisearch(ucs, combining,
226 sizeof(combining) / sizeof(struct interval) - 1))
227 return 0;
228
229 /* binary search in table of double-width characters */
230 if (bisearch(ucs, doublewith,
231 sizeof(doublewith) / sizeof(struct interval) - 1))
232 return 2;
233
234 /* if we arrive here, ucs is not a combining or C0/C1 control character */
235
236 return 1 +
237 (ucs >= 0x1100 &&
238 (ucs <= 0x115f || /* Hangul Jamo init. consonants */
239 ucs == 0x2329 || ucs == 0x232a ||
240 (ucs >= 0x2e80 && ucs <= 0xa4cf &&
241 ucs != 0x303f) || /* CJK ... Yi */
242 (ucs >= 0xac00 && ucs <= 0xd7a3) || /* Hangul Syllables */
243 (ucs >= 0xf900 && ucs <= 0xfaff) || /* CJK Compatibility Ideographs */
244 (ucs >= 0xfe10 && ucs <= 0xfe19) || /* Vertical forms */
245 (ucs >= 0xfe30 && ucs <= 0xfe6f) || /* CJK Compatibility Forms */
246 (ucs >= 0xff00 && ucs <= 0xff60) || /* Fullwidth Forms */
247 (ucs >= 0xffe0 && ucs <= 0xffe6) ||
248 (ucs >= 0x20000 && ucs <= 0x2fffd) ||
249 (ucs >= 0x30000 && ucs <= 0x3fffd)));
250 }
251
252 int mk_wcswidth(const wchar_t *pwcs, size_t n)
253 {
254 int w, width = 0;
255
256 for (;*pwcs && n-- > 0; pwcs++)
257 if ((w = mk_wcwidth(*pwcs)) < 0)
258 return -1;
259 else
260 width += w;
261
262 return width;
263 }
264
265
266 /*
267 * The following functions are the same as mk_wcwidth() and
268 * mk_wcswidth(), except that spacing characters in the East Asian
269 * Ambiguous (A) category as defined in Unicode Technical Report #11
270 * have a column width of 2. This variant might be useful for users of
271 * CJK legacy encodings who want to migrate to UCS without changing
272 * the traditional terminal character-width behaviour. It is not
273 * otherwise recommended for general use.
274 */
275 int mk_wcwidth_cjk(wchar_t ucs)
276 {
277 /* sorted list of non-overlapping intervals of East Asian Ambiguous
278 * characters, generated by "uniset +WIDTH-A -cat=Me -cat=Mn -cat=Cf c" */
279 static const struct interval ambiguous[] = {
280 { 0x00A1, 0x00A1 }, { 0x00A4, 0x00A4 }, { 0x00A7, 0x00A8 },
281 { 0x00AA, 0x00AA }, { 0x00AE, 0x00AE }, { 0x00B0, 0x00B4 },
282 { 0x00B6, 0x00BA }, { 0x00BC, 0x00BF }, { 0x00C6, 0x00C6 },
283 { 0x00D0, 0x00D0 }, { 0x00D7, 0x00D8 }, { 0x00DE, 0x00E1 },
284 { 0x00E6, 0x00E6 }, { 0x00E8, 0x00EA }, { 0x00EC, 0x00ED },
285 { 0x00F0, 0x00F0 }, { 0x00F2, 0x00F3 }, { 0x00F7, 0x00FA },
286 { 0x00FC, 0x00FC }, { 0x00FE, 0x00FE }, { 0x0101, 0x0101 },
287 { 0x0111, 0x0111 }, { 0x0113, 0x0113 }, { 0x011B, 0x011B },
288 { 0x0126, 0x0127 }, { 0x012B, 0x012B }, { 0x0131, 0x0133 },
289 { 0x0138, 0x0138 }, { 0x013F, 0x0142 }, { 0x0144, 0x0144 },
290 { 0x0148, 0x014B }, { 0x014D, 0x014D }, { 0x0152, 0x0153 },
291 { 0x0166, 0x0167 }, { 0x016B, 0x016B }, { 0x01CE, 0x01CE },
292 { 0x01D0, 0x01D0 }, { 0x01D2, 0x01D2 }, { 0x01D4, 0x01D4 },
293 { 0x01D6, 0x01D6 }, { 0x01D8, 0x01D8 }, { 0x01DA, 0x01DA },
294 { 0x01DC, 0x01DC }, { 0x0251, 0x0251 }, { 0x0261, 0x0261 },
295 { 0x02C4, 0x02C4 }, { 0x02C7, 0x02C7 }, { 0x02C9, 0x02CB },
296 { 0x02CD, 0x02CD }, { 0x02D0, 0x02D0 }, { 0x02D8, 0x02DB },
297 { 0x02DD, 0x02DD }, { 0x02DF, 0x02DF }, { 0x0391, 0x03A1 },
298 { 0x03A3, 0x03A9 }, { 0x03B1, 0x03C1 }, { 0x03C3, 0x03C9 },
299 { 0x0401, 0x0401 }, { 0x0410, 0x044F }, { 0x0451, 0x0451 },
300 { 0x2010, 0x2010 }, { 0x2013, 0x2016 }, { 0x2018, 0x2019 },
301 { 0x201C, 0x201D }, { 0x2020, 0x2022 }, { 0x2024, 0x2027 },
302 { 0x2030, 0x2030 }, { 0x2032, 0x2033 }, { 0x2035, 0x2035 },
303 { 0x203B, 0x203B }, { 0x203E, 0x203E }, { 0x2074, 0x2074 },
304 { 0x207F, 0x207F }, { 0x2081, 0x2084 }, { 0x20AC, 0x20AC },
305 { 0x2103, 0x2103 }, { 0x2105, 0x2105 }, { 0x2109, 0x2109 },
306 { 0x2113, 0x2113 }, { 0x2116, 0x2116 }, { 0x2121, 0x2122 },
307 { 0x2126, 0x2126 }, { 0x212B, 0x212B }, { 0x2153, 0x2154 },
308 { 0x215B, 0x215E }, { 0x2160, 0x216B }, { 0x2170, 0x2179 },
309 { 0x2190, 0x2199 }, { 0x21B8, 0x21B9 }, { 0x21D2, 0x21D2 },
310 { 0x21D4, 0x21D4 }, { 0x21E7, 0x21E7 }, { 0x2200, 0x2200 },
311 { 0x2202, 0x2203 }, { 0x2207, 0x2208 }, { 0x220B, 0x220B },
312 { 0x220F, 0x220F }, { 0x2211, 0x2211 }, { 0x2215, 0x2215 },
313 { 0x221A, 0x221A }, { 0x221D, 0x2220 }, { 0x2223, 0x2223 },
314 { 0x2225, 0x2225 }, { 0x2227, 0x222C }, { 0x222E, 0x222E },
315 { 0x2234, 0x2237 }, { 0x223C, 0x223D }, { 0x2248, 0x2248 },
316 { 0x224C, 0x224C }, { 0x2252, 0x2252 }, { 0x2260, 0x2261 },
317 { 0x2264, 0x2267 }, { 0x226A, 0x226B }, { 0x226E, 0x226F },
318 { 0x2282, 0x2283 }, { 0x2286, 0x2287 }, { 0x2295, 0x2295 },
319 { 0x2299, 0x2299 }, { 0x22A5, 0x22A5 }, { 0x22BF, 0x22BF },
320 { 0x2312, 0x2312 }, { 0x2460, 0x24E9 }, { 0x24EB, 0x254B },
321 { 0x2550, 0x2573 }, { 0x2580, 0x258F }, { 0x2592, 0x2595 },
322 { 0x25A0, 0x25A1 }, { 0x25A3, 0x25A9 }, { 0x25B2, 0x25B3 },
323 { 0x25B6, 0x25B7 }, { 0x25BC, 0x25BD }, { 0x25C0, 0x25C1 },
324 { 0x25C6, 0x25C8 }, { 0x25CB, 0x25CB }, { 0x25CE, 0x25D1 },
325 { 0x25E2, 0x25E5 }, { 0x25EF, 0x25EF }, { 0x2605, 0x2606 },
326 { 0x2609, 0x2609 }, { 0x260E, 0x260F }, { 0x2614, 0x2615 },
327 { 0x261C, 0x261C }, { 0x261E, 0x261E }, { 0x2640, 0x2640 },
328 { 0x2642, 0x2642 }, { 0x2660, 0x2661 }, { 0x2663, 0x2665 },
329 { 0x2667, 0x266A }, { 0x266C, 0x266D }, { 0x266F, 0x266F },
330 { 0x273D, 0x273D }, { 0x2776, 0x277F }, { 0xE000, 0xF8FF },
331 { 0xFFFD, 0xFFFD }, { 0xF0000, 0xFFFFD }, { 0x100000, 0x10FFFD }
332 };
333
334 /* binary search in table of non-spacing characters */
335 if (bisearch(ucs, ambiguous,
336 sizeof(ambiguous) / sizeof(struct interval) - 1))
337 return 2;
338
339 return mk_wcwidth(ucs);
340 }
341
342
343 int mk_wcswidth_cjk(const wchar_t *pwcs, size_t n)
344 {
345 int w, width = 0;
346
347 for (;*pwcs && n-- > 0; pwcs++)
348 if ((w = mk_wcwidth_cjk(*pwcs)) < 0)
349 return -1;
350 else
351 width += w;
352
353 return width;
354 }
355