💾 Archived View for gemini.bortzmeyer.org › rfc-mirror › rfc5794.txt captured on 2023-11-04 at 13:21:43.
⬅️ Previous capture (2021-11-30)
-=-=-=-=-=-=-
Independent Submission J. Lee Request for Comments: 5794 J. Lee Category: Informational J. Kim ISSN: 2070-1721 D. Kwon C. Kim NSRI March 2010 A Description of the ARIA Encryption Algorithm Abstract This document describes the ARIA encryption algorithm. ARIA is a 128-bit block cipher with 128-, 192-, and 256-bit keys. The algorithm consists of a key scheduling part and data randomizing part. Status of This Memo This document is not an Internet Standards Track specification; it is published for informational purposes. This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen to publish this document at its discretion and makes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5794. Copyright Notice Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Lee, et al. Informational [Page 1] RFC 5794 The ARIA Encryption Algorithm March 2010 1. Introduction 1.1. ARIA Overview ARIA is a general-purpose block cipher algorithm developed by Korean cryptographers in 2003. It is an iterated block cipher with 128-, 192-, and 256-bit keys and encrypts 128-bit blocks in 12, 14, and 16 rounds, depending on the key size. It is secure and suitable for most software and hardware implementations on 32-bit and 8-bit processors. It was established as a Korean standard block cipher algorithm in 2004 [ARIAKS] and has been widely used in Korea, especially for government-to-public services. It was included in PKCS #11 in 2007 [ARIAPKCS]. 2. Algorithm Description The algorithm consists of a key scheduling part and data randomizing part. 2.1. Notations The following notations are used in this document to describe the algorithm. ^ bitwise XOR operation <<< left circular rotation >>> right circular rotation || concatenation of bit strings 0x hexadecimal representation 2.2. Key Scheduling Part Let K denote a master key of 128, 192, or 256 bits. Given the master key K, we first define 128-bit values KL and KR as follows. KL || KR = K || 0 ... 0, where the number of zeros is 128, 64, or 0, depending on the size of K. That is, KL is set to the leftmost 128 bits of K and KR is set to the remaining bits of K (if any), right-padded with zeros to a 128-bit value. Then, we define four 128-bit values (W0, W1, W2, and W3) as the intermediate round values appearing in the encryption of KL || KR by a 3-round, 256-bit Feistel cipher. W0 = KL, W1 = FO(W0, CK1) ^ KR, W2 = FE(W1, CK2) ^ W0, W3 = FO(W2, CK3) ^ W1. Lee, et al. Informational [Page 2] RFC 5794 The ARIA Encryption Algorithm March 2010 Here, FO and FE, respectively called odd and even round functions, are defined in Section 2.4.1. CK1, CK2, and CK3 are 128-bit constants, taking one of the following values. C1 = 0x517cc1b727220a94fe13abe8fa9a6ee0 C2 = 0x6db14acc9e21c820ff28b1d5ef5de2b0 C3 = 0xdb92371d2126e9700324977504e8c90e These values are obtained from the first 128*3 bits of the fractional part of 1/PI, where PI is the circle ratio. Now the constants CK1, CK2, and CK3 are defined by the following table. Key size CK1 CK2 CK3 128 C1 C2 C3 192 C2 C3 C1 256 C3 C1 C2 For example, if the key size is 192 bits, CK1 = C2, CK2 = C3, and CK3 = C1. Once W0, W1, W2, and W3 are determined, we compute encryption round keys ek1, ..., ek17 as follows. ek1 = W0 ^(W1 >>> 19), ek2 = W1 ^(W2 >>> 19), ek3 = W2 ^(W3 >>> 19), ek4 = (W0 >>> 19) ^ W3, ek5 = W0 ^ (W1 >>> 31), ek6 = W1 ^ (W2 >>> 31), ek7 = W2 ^ (W3 >>> 31), ek8 = (W0 >>> 31) ^ W3, ek9 = W0 ^ (W1 <<< 61), ek10 = W1 ^ (W2 <<< 61), ek11 = W2 ^ (W3 <<< 61), ek12 = (W0 <<< 61) ^ W3, ek13 = W0 ^ (W1 <<< 31), ek14 = W1 ^ (W2 <<< 31), ek15 = W2 ^ (W3 <<< 31), ek16 = (W0 <<< 31) ^ W3, ek17 = W0 ^ (W1 <<< 19). The number of rounds depends on the size of the master key as follows. Key size Number of Rounds 128 12 192 14 256 16 Lee, et al. Informational [Page 3] RFC 5794 The ARIA Encryption Algorithm March 2010 Due to an extra key addition layer in the last round, 12-, 14-, and 16-round algorithms require 13, 15, and 17 round keys, respectively. Decryption round keys are derived from the encryption round keys. dk1 = ek{n+1}, dk2 = A(ek{n}), dk3 = A(ek{n-1}), ..., dk{n}= A(ek2), dk{n+1}= ek1. Here, A and n denote the diffusion layer of ARIA and the number of rounds, respectively. The diffusion layer A is defined in Section 2.4.3. 2.3. Data Randomizing Part The data randomizing part of the ARIA algorithm consists of the encryption and decryption processes. The encryption and decryption processes use functions FO, FE, A, SL1, and SL2. These functions are defined in Section 2.4. 2.3.1. Encryption Process 2.3.1.1. Encryption for 128-Bit Keys Let P be a 128-bit plaintext and K be a 128-bit master key. Let ek1, ..., ek13 be the encryption round keys defined by K. Then the ciphertext C is computed by the following algorithm. P1 = FO(P , ek1 ); // Round 1 P2 = FE(P1 , ek2 ); // Round 2 P3 = FO(P2 , ek3 ); // Round 3 P4 = FE(P3 , ek4 ); // Round 4 P5 = FO(P4 , ek5 ); // Round 5 P6 = FE(P5 , ek6 ); // Round 6 P7 = FO(P6 , ek7 ); // Round 7 P8 = FE(P7 , ek8 ); // Round 8 P9 = FO(P8 , ek9 ); // Round 9 P10 = FE(P9 , ek10); // Round 10 P11 = FO(P10, ek11); // Round 11 C = SL2(P11 ^ ek12) ^ ek13; // Round 12 Lee, et al. Informational [Page 4] RFC 5794 The ARIA Encryption Algorithm March 2010 2.3.1.2. Encryption for 192-Bit Keys Let P be a 128-bit plaintext and K be a 192-bit master key. Let ek1, ..., ek15 be the encryption round keys defined by K. Then the ciphertext C is computed by the following algorithm. P1 = FO(P , ek1 ); // Round 1 P2 = FE(P1 , ek2 ); // Round 2 P3 = FO(P2 , ek3 ); // Round 3 P4 = FE(P3 , ek4 ); // Round 4 P5 = FO(P4 , ek5 ); // Round 5 P6 = FE(P5 , ek6 ); // Round 6 P7 = FO(P6 , ek7 ); // Round 7 P8 = FE(P7 , ek8 ); // Round 8 P9 = FO(P8 , ek9 ); // Round 9 P10 = FE(P9 , ek10); // Round 10 P11 = FO(P10, ek11); // Round 11 P12 = FE(P11, ek12); // Round 12 P13 = FO(P12, ek13); // Round 13 C = SL2(P13 ^ ek14) ^ ek15; // Round 14 2.3.1.3. Encryption for 256-Bit Keys Let P be a 128-bit plaintext and K be a 256-bit master key. Let ek1, ..., ek17 be the encryption round keys defined by K. Then the ciphertext C is computed by the following algorithm. P1 = FO(P , ek1 ); // Round 1 P2 = FE(P1 , ek2 ); // Round 2 P3 = FO(P2 , ek3 ); // Round 3 P4 = FE(P3 , ek4 ); // Round 4 P5 = FO(P4 , ek5 ); // Round 5 P6 = FE(P5 , ek6 ); // Round 6 P7 = FO(P6 , ek7 ); // Round 7 P8 = FE(P7 , ek8 ); // Round 8 P9 = FO(P8 , ek9 ); // Round 9 P10= FE(P9 , ek10); // Round 10 P11= FO(P10, ek11); // Round 11 P12= FE(P11, ek12); // Round 12 P13= FO(P12, ek13); // Round 13 P14= FE(P13, ek14); // Round 14 P15= FO(P14, ek15); // Round 15 C = SL2(P15 ^ ek16) ^ ek17; // Round 16 Lee, et al. Informational [Page 5] RFC 5794 The ARIA Encryption Algorithm March 2010 2.3.2. Decryption Process The decryption process of ARIA is the same as the encryption process except that encryption round keys are replaced by decryption round keys. For example, encryption round keys ek1, ..., ek13 of the 12-round ARIA algorithm are replaced by decryption round keys dk1, ..., dk13, respectively. 2.4. Components of ARIA 2.4.1. Round Functions There are two types of round functions for ARIA. One is called an odd round function and is denoted by FO. It takes as input a pair (D,RK) of two 128-bit strings and outputs FO(D,RK) = A(SL1(D ^ RK)). The other is called an even round function and is denoted by FE. It takes as input a pair (D,RK) of two 128-bit strings and outputs FE(D,RK) = A(SL2(D ^ RK)). Functions SL1 and SL2, called substitution layers, are described in Section 2.4.2. Function A, called a diffusion layer, is described in Section 2.4.3. 2.4.2. Substitution Layers ARIA has two types of substitution layers that alternate between rounds. Type 1 is used in the odd rounds, and type 2 is used in the even rounds. Type 1 substitution layer SL1 is an algorithm that takes a 16-byte string x0 || x1 ||...|| x15 as input and outputs a 16-byte string y0 || y1 ||...|| y15 as follows. y0 = SB1(x0), y1 = SB2(x1), y2 = SB3(x2), y3 = SB4(x3), y4 = SB1(x4), y5 = SB2(x5), y6 = SB3(x6), y7 = SB4(x7), y8 = SB1(x8), y9 = SB2(x9), y10= SB3(x10), y11= SB4(x11), y12= SB1(x12), y13= SB2(x13), y14= SB3(x14), y15= SB4(x15). Type 2 substitution layer SL2 is an algorithm that takes a 16-byte string x0 || x1 ||...|| x15 as input and outputs a 16-byte string y0 || y1 ||...|| y15 as follows. Lee, et al. Informational [Page 6] RFC 5794 The ARIA Encryption Algorithm March 2010 y0 = SB3(x0), y1 = SB4(x1), y2 = SB1(x2), y3 = SB2(x3), y4 = SB3(x4), y5 = SB4(x5), y6 = SB1(x6), y7 = SB2(x7), y8 = SB3(x8), y9 = SB4(x9), y10= SB1(x10), y11= SB2(x11), y12= SB3(x12), y13= SB4(x13), y14= SB1(x14), y15= SB2(x15). Here, SB1, SB2, SB3, and SB4 are S-boxes that take an 8-bit string as input and output an 8-bit string. These S-boxes are defined by the following look-up tables. SB1: 0 1 2 3 4 5 6 7 8 9 a b c d e f 00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0 20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf 60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2 80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79 b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08 c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 SB2: 0 1 2 3 4 5 6 7 8 9 a b c d e f 00 e2 4e 54 fc 94 c2 4a cc 62 0d 6a 46 3c 4d 8b d1 10 5e fa 64 cb b4 97 be 2b bc 77 2e 03 d3 19 59 c1 20 1d 06 41 6b 55 f0 99 69 ea 9c 18 ae 63 df e7 bb 30 00 73 66 fb 96 4c 85 e4 3a 09 45 aa 0f ee 10 eb 40 2d 7f f4 29 ac cf ad 91 8d 78 c8 95 f9 2f ce cd 50 08 7a 88 38 5c 83 2a 28 47 db b8 c7 93 a4 12 53 60 ff 87 0e 31 36 21 58 48 01 8e 37 74 32 ca e9 b1 70 b7 ab 0c d7 c4 56 42 26 07 98 60 d9 b6 b9 11 40 80 ec 20 8c bd a0 c9 84 04 49 23 f1 4f 50 1f 13 dc 90 d8 c0 9e 57 e3 c3 7b 65 3b 02 8f 3e e8 25 92 e5 a0 15 dd fd 17 a9 bf d4 9a 7e c5 39 67 fe 76 9d 43 b0 a7 e1 d0 f5 68 f2 1b 34 70 05 a3 8a d5 79 86 a8 c0 30 c6 51 4b 1e a6 27 f6 35 d2 6e 24 16 82 5f da d0 e6 75 a2 ef 2c b2 1c 9f 5d 6f 80 0a 72 44 9b 6c e0 90 0b 5b 33 7d 5a 52 f3 61 a1 f7 b0 d6 3f 7c 6d f0 ed 14 e0 a5 3d 22 b3 f8 89 de 71 1a af ba b5 81 Lee, et al. Informational [Page 7] RFC 5794 The ARIA Encryption Algorithm March 2010 SB3: 0 1 2 3 4 5 6 7 8 9 a b c d e f 00 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb 10 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb 20 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e 30 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25 40 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92 50 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84 60 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06 70 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b 80 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73 90 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e a0 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b b0 fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4 c0 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f d0 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef e0 a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61 f0 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d SB4: 0 1 2 3 4 5 6 7 8 9 a b c d e f 00 30 68 99 1b 87 b9 21 78 50 39 db e1 72 9 62 3c 10 3e 7e 5e 8e f1 a0 cc a3 2a 1d fb b6 d6 20 c4 8d 20 81 65 f5 89 cb 9d 77 c6 57 43 56 17 d4 40 1a 4d 30 c0 63 6c e3 b7 c8 64 6a 53 aa 38 98 0c f4 9b ed 40 7f 22 76 af dd 3a 0b 58 67 88 06 c3 35 0d 01 8b 50 8c c2 e6 5f 02 24 75 93 66 1e e5 e2 54 d8 10 ce 60 7a e8 08 2c 12 97 32 ab b4 27 0a 23 df ef ca d9 70 b8 fa dc 31 6b d1 ad 19 49 bd 51 96 ee e4 a8 41 80 da ff cd 55 86 36 be 61 52 f8 bb 0e 82 48 69 9a 90 e0 47 9e 5c 04 4b 34 15 79 26 a7 de 29 ae 92 d7 a0 84 e9 d2 ba 5d f3 c5 b0 bf a4 3b 71 44 46 2b fc b0 eb 6f d5 f6 14 fe 7c 70 5a 7d fd 2f 18 83 16 a5 c0 91 1f 05 95 74 a9 c1 5b 4a 85 6d 13 07 4f 4e 45 d0 b2 0f c9 1c a6 bc ec 73 90 7b cf 59 8f a1 f9 2d e0 f2 b1 00 94 37 9f d0 2e 9c 6e 28 3f 80 f0 3d d3 f0 25 8a b5 e7 42 b3 c7 ea f7 4c 11 33 03 a2 ac 60 For example, SB1(0x23) = 0x26 and SB4(0xef) = 0xd3. Note that SB3 and SB4 are the inverse functions of SB1 and SB2, respectively, and accordingly SL2 is the inverse of SL1. 2.4.3. Diffusion Layer Diffusion layer A is an algorithm that takes a 16-byte string x0 || x1 || ... || x15 as input and outputs a 16-byte string y0 || y1 ||...|| y15 by the following equations. Lee, et al. Informational [Page 8] RFC 5794 The ARIA Encryption Algorithm March 2010 y0 = x3 ^ x4 ^ x6 ^ x8 ^ x9 ^ x13 ^ x14, y1 = x2 ^ x5 ^ x7 ^ x8 ^ x9 ^ x12 ^ x15, y2 = x1 ^ x4 ^ x6 ^ x10 ^ x11 ^ x12 ^ x15, y3 = x0 ^ x5 ^ x7 ^ x10 ^ x11 ^ x13 ^ x14, y4 = x0 ^ x2 ^ x5 ^ x8 ^ x11 ^ x14 ^ x15, y5 = x1 ^ x3 ^ x4 ^ x9 ^ x10 ^ x14 ^ x15, y6 = x0 ^ x2 ^ x7 ^ x9 ^ x10 ^ x12 ^ x13, y7 = x1 ^ x3 ^ x6 ^ x8 ^ x11 ^ x12 ^ x13, y8 = x0 ^ x1 ^ x4 ^ x7 ^ x10 ^ x13 ^ x15, y9 = x0 ^ x1 ^ x5 ^ x6 ^ x11 ^ x12 ^ x14, y10 = x2 ^ x3 ^ x5 ^ x6 ^ x8 ^ x13 ^ x15, y11 = x2 ^ x3 ^ x4 ^ x7 ^ x9 ^ x12 ^ x14, y12 = x1 ^ x2 ^ x6 ^ x7 ^ x9 ^ x11 ^ x12, y13 = x0 ^ x3 ^ x6 ^ x7 ^ x8 ^ x10 ^ x13, y14 = x0 ^ x3 ^ x4 ^ x5 ^ x9 ^ x11 ^ x14, y15 = x1 ^ x2 ^ x4 ^ x5 ^ x8 ^ x10 ^ x15. Note that A is an involution. That is, for any 16-byte input string x, x = A(A(x)) holds. 3. Security Considerations ARIA is designed to be resistant to all known attacks on block ciphers [ARIA03]. Its security was analyzed by the COSIC group of K.U.Leuven in Belgium [ARIAEVAL] and no security flaw has been found. 4. Informative References [ARIAEVAL] Biryukov, A., et al., "Security and Performance Analysis of ARIA", K.U.Leuven (2003), available at http://www.cosic.esat.kuleuven.be/publications/ article-500.pdf [ARIA03] Kwon, D., et al., "New Block Cipher: ARIA", ICISC 2003, pp. 432-445. [ARIAKS] Korean Agency for Technology and Standards (KATS), "128 bit block encryption algorithm ARIA", KS X 1213:2004, December 2004 (In Korean). [ARIAPKCS] RSA Laboratories, PKCS #11 v2.20 Amendment 3 Revision 1: Additional PKCS #11 Mechanisms, January 2007. [X.680] ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002, Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation. Lee, et al. Informational [Page 9] RFC 5794 The ARIA Encryption Algorithm March 2010 [X.681] ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002, Information technology - Abstract Syntax Notation One (ASN.1): Information object specification. [X.682] ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002, Information technology - Abstract Syntax Notation One (ASN.1): Constraint specification. [X.683] ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002, Information technology - Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications. Lee, et al. Informational [Page 10] RFC 5794 The ARIA Encryption Algorithm March 2010 Appendix A. Example Data of ARIA Here are test data for ARIA in hexadecimal form. A.1. 128-Bit Key - Key : 000102030405060708090a0b0c0d0e0f - Plaintext : 00112233445566778899aabbccddeeff - Ciphertext: d718fbd6ab644c739da95f3be6451778 - Round key generators W0: 000102030405060708090a0b0c0d0e0f W1: 2afbea741e1746dd55c63ba1afcea0a5 W2: 7c8578018bb127e02dfe4e78c288e33c W3: 6785b52b74da46bf181054082763ff6d - Encryption round keys e1: d415a75c794b85c5e0d2a0b3cb793bf6 e2: 369c65e4b11777ab713a3e1e6601b8f4 e3: 0368d4f13d14497b6529ad7ac809e7d0 e4: c644552b549a263fb8d0b50906229eec e5: 5f9c434951f2d2ef342787b1a781794c e6: afea2c0ce71db6de42a47461f4323c54 e7: 324286db44ba4db6c44ac306f2a84b2c e8: 7f9fa93574d842b9101a58063771eb7b e9: aab9c57731fcd213ad5677458fcfe6d4 e10: 2f4423bb06465abada5694a19eb88459 e11: 9f8772808f5d580d810ef8ddac13abeb e12: 8684946a155be77ef810744847e35fad e13: 0f0aa16daee61bd7dfee5a599970fb35 - Intermediate round values P1: 7fc7f12befd0a0791de87fa96b469f52 P2: ac8de17e49f7c5117618993162b189e9 P3: c3e8d59ec2e62d5249ca2741653cb7dd P4: 5d4aebb165e141ff759f669e1e85cc45 P5: 7806e469f68874c5004b5f4a046bbcfa P6: 110f93c9a630cdd51f97d2202413345a P7: e054428ef088fef97928241cd3be499e P8: 5734f38ea1ca3ddd102e71f95e1d5f97 P9: 4903325be3e500cccd52fba4354a39ae P10: cb8c508e2c4f87880639dc896d25ec9d P11: e7e0d2457ed73d23d481424095afdca0 Lee, et al. Informational [Page 11] RFC 5794 The ARIA Encryption Algorithm March 2010 A.2. 192-Bit Key Key : 000102030405060708090a0b0c0d0e0f 1011121314151617 Plaintext : 00112233445566778899aabbccddeeff Ciphertext: 26449c1805dbe7aa25a468ce263a9e79 A.3. 256-Bit Key Key : 000102030405060708090a0b0c0d0e0f 101112131415161718191a1b1c1d1e1f Plaintext : 00112233445566778899aabbccddeeff Ciphertext: f92bd7c79fb72e2f2b8f80c1972d24fc Appendix B. OIDs Here is an ASN.1 module conforming to the 2002 version of ASN.1 [X.680][X.681][X.682][X.683]. AriaModesOfOperation { iso(1) member-body(2) korea(400) nsri(200046) algorithm (1) symmetric-encryption-algorithm(1) asn1-module(0) alg-oids(0) } DEFINITIONS IMPLICIT TAGS ::= BEGIN OID ::= OBJECT IDENTIFIER -- Synonyms -- id-algorithm OID ::= { iso(1) member-body(2) korea(410) nsri(200046) algorithm(1)} id-sea OID ::= { id-algorithm symmetric-encryption-algorithm(1)} id-pad OID ::= { id-algorithm pad(2)} id-pad-null RELATIVE-OID ::= {0} -- no padding algorithms identified id-pad-1 RELATIVE-OID ::= {1} -- padding method 2 of ISO/IEC 9797-1:1999 -- confidentiality modes: -- ECB, CBC, CFB, OFB, CTR id-aria128-ecb OID ::= { id-sea aria128-ecb(1)} id-aria128-cbc OID ::= { id-sea aria128-cbc(2)} id-aria128-cfb OID ::= { id-sea aria128-cfb(3)} id-aria128-ofb OID ::= { id-sea aria128-ofb(4)} id-aria128-ctr OID ::= { id-sea aria128-ctr(5)} Lee, et al. Informational [Page 12] RFC 5794 The ARIA Encryption Algorithm March 2010 id-aria192-ecb OID ::= { id-sea aria192-ecb(6)} id-aria192-cbc OID ::= { id-sea aria192-cbc(7)} id-aria192-cfb OID ::= { id-sea aria192-cfb(8)} id-aria192-ofb OID ::= { id-sea aria192-ofb(9)} id-aria192-ctr OID ::= { id-sea aria192-ctr(10)} id-aria256-ecb OID ::= { id-sea aria256-ecb(11)} id-aria256-cbc OID ::= { id-sea aria256-cbc(12)} id-aria256-cfb OID ::= { id-sea aria256-cfb(13)} id-aria256-ofb OID ::= { id-sea aria256-ofb(14)} id-aria256-ctr OID ::= { id-sea aria256-ctr(15)} -- authentication modes: CMAC id-aria128-cmac OID ::= { id-sea aria128-cmac(21)} id-aria192-cmac OID ::= { id-sea aria192-cmac(22)} id-aria256-cmac OID ::= { id-sea aria256-cmac(23)} -- modes for both confidentiality and authentication -- OCB 2.0, GCM, CCM, Key Wrap id-aria128-ocb2 OID ::= { id-sea aria128-ocb2(31)} id-aria192-ocb2 OID ::= { id-sea aria192-ocb2(32)} id-aria256-ocb2 OID ::= { id-sea aria256-ocb2(33)} id-aria128-gcm OID ::= { id-sea aria128-gcm(34)} id-aria192-gcm OID ::= { id-sea aria192-gcm(35)} id-aria256-gcm OID ::= { id-sea aria256-gcm(36)} id-aria128-ccm OID ::= { id-sea aria128-ccm(37)} id-aria192-ccm OID ::= { id-sea aria192-ccm(38)} id-aria256-ccm OID ::= { id-sea aria256-ccm(39)} id-aria128-kw OID ::= { id-sea aria128-kw(40)} id-aria192-kw OID ::= { id-sea aria192-kw(41)} id-aria256-kw OID ::= { id-sea aria256-kw(42)} -- ARIA Key-Wrap with Padding Algorithm (AES version: RFC 5649) id-aria128-kwp OID ::= { id-sea aria128-kwp(43)} id-aria192-kwp OID ::= { id-sea aria192-kwp(44)} id-aria256-kwp OID ::= { id-sea aria256-kwp(45)} Lee, et al. Informational [Page 13] RFC 5794 The ARIA Encryption Algorithm March 2010 AriaModeOfOperation ::= AlgorithmIdentifier { {AriaModeOfOperationAlgorithms} } AriaModeOfOperationAlgorithms ALGORITHM ::= { aria128ecb |aria128cbc |aria128cfb |aria128ofb |aria128ctr | aria192ecb |aria192cbc |aria192cfb |aria192ofb |aria192ctr | aria256ecb |aria256cbc |aria256cfb |aria256ofb |aria256ctr | aria128cmac |aria192cmac |aria256cmac | aria128ocb2 |aria192ocb2 |aria256ocb2 | aria128gcm |aria192gcm |aria256gcm | aria128ccm |aria192ccm |aria256ccm | aria128kw |aria192kw |aria256kw | aria128kwp |aria192kwp |aria256kwp , ... --Extensible } aria128ecb ALGORITHM ::= { OID id-aria128-ecb PARAMS AriaEcbParameters } aria128cbc ALGORITHM ::= { OID id-aria128-cbc PARAMS AriaCbcParameters } aria128cfb ALGORITHM ::= { OID id-aria128-cfb PARAMS AriaCfbParameters } aria128ofb ALGORITHM ::= { OID id-aria128-ofb PARAMS AriaOfbParameters } aria128ctr ALGORITHM ::= { OID id-aria128-ctr PARAMS AriaCtrParameters } aria192ecb ALGORITHM ::= { OID id-aria192-ecb PARAMS AriaEcbParameters } aria192cbc ALGORITHM ::= { OID id-aria192-cbc PARAMS AriaCbcParameters } aria192cfb ALGORITHM ::= { OID id-aria192-cfb PARAMS AriaCfbParameters } aria192ofb ALGORITHM ::= { OID id-aria192-ofb PARAMS AriaOfbParameters } aria192ctr ALGORITHM ::= { OID id-aria192-ctr PARAMS AriaCtrParameters } Lee, et al. Informational [Page 14] RFC 5794 The ARIA Encryption Algorithm March 2010 aria256ecb ALGORITHM ::= { OID id-aria256-ecb PARAMS AriaEcbParameters } aria256cbc ALGORITHM ::= { OID id-aria256-cbc PARAMS AriaCbcParameters } aria256cfb ALGORITHM ::= { OID id-aria256-cfb PARAMS AriaCfbParameters } aria256ofb ALGORITHM ::= { OID id-aria256-ofb PARAMS AriaOfbParameters } aria256ctr ALGORITHM ::= { OID id-aria256-ctr PARAMS AriaCtrParameters } aria128cmac ALGORITHM ::= { OID id-aria128-cmac PARAMS AriaCmacParameters } aria192cmac ALGORITHM ::= { OID id-aria192-cmac PARAMS AriaCmacParameters } aria256cmac ALGORITHM ::= { OID id-aria256-cmac PARAMS AriaCmacParameters } aria128ocb2 ALGORITHM ::= { OID id-aria128-ocb2 PARAMS AriaOcb2Parameters } aria192ocb2 ALGORITHM ::= { OID id-aria192-ocb2 PARAMS AriaOcb2Parameters } aria256ocb2 ALGORITHM ::= { OID id-aria256-ocb2 PARAMS AriaOcb2Parameters } aria128gcm ALGORITHM ::= { OID id-aria128-gcm PARAMS AriaGcmParameters } aria192gcm ALGORITHM ::= { OID id-aria192-gcm PARAMS AriaGcmParameters } aria256gcm ALGORITHM ::= { OID id-aria256-gcm PARAMS AriaGcmParameters } aria128ccm ALGORITHM ::= { OID id-aria128-ccm PARAMS AriaCcmParameters } aria192ccm ALGORITHM ::= { OID id-aria192-ccm PARAMS AriaCcmParameters } aria256ccm ALGORITHM ::= { OID id-aria256-ccm PARAMS AriaCcmParameters } aria128kw ALGORITHM ::= { OID id-aria128-kw } aria192kw ALGORITHM ::= { OID id-aria192-kw } aria256kw ALGORITHM ::= { OID id-aria256-kw } aria128kwp ALGORITHM ::= { OID id-aria128-kwp } aria192kwp ALGORITHM ::= { OID id-aria192-kwp } aria256kwp ALGORITHM ::= { OID id-aria256-kwp } Lee, et al. Informational [Page 15] RFC 5794 The ARIA Encryption Algorithm March 2010 AriaPadAlgo ::= CHOICE { specifiedPadAlgo RELATIVE-OID, generalPadAlgo OID } AriaEcbParameters ::= SEQUENCE { padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-null } AriaCbcParameters ::= SEQUENCE { m INTEGER DEFAULT 1, -- number of stored ciphertext blocks padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-1 } AriaCfbParameters ::= SEQUENCE { r INTEGER, -- bit-length of feedback buffer, 128<=r<=128*1024 k INTEGER, -- bit-length of feedback variable, 1<=k<=128 j INTEGER, -- bit-length of plaintext/ciphertext block, 1<=j<=k padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-null } AriaOfbParameters ::= SEQUENCE { j INTEGER, -- bit-length of plaintext/ciphertext block, 1<=j<=128 padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-null } AriaCtrParameters ::= SEQUENCE { j INTEGER, -- bit-length of plaintext/ciphertext block, 1<=j<=128 padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-null } AriaCmacParameters ::= INTEGER -- bit-length of authentication tag AriaOcb2Parameters ::= INTEGER -- bit-length of authentication tag AriaGcmParameters ::= SEQUENCE { s INTEGER, -- bit-length of starting variable t INTEGER -- bit-length of authentication tag } Lee, et al. Informational [Page 16] RFC 5794 The ARIA Encryption Algorithm March 2010 AriaCcmParameters ::= SEQUENCE { w INTEGER (2|3|4|5|6|7|8), -- length of message length field in octets t INTEGER (32|48|64|80|96|112|128) -- bit-length of authentication tag } ALGORITHM ::= CLASS { &id OBJECT IDENTIFIER UNIQUE, &Type OPTIONAL } WITH SYNTAX { OID &id [PARAMS &Type] } AlgorithmIdentifier { ALGORITHM:AlgoSet } ::= SEQUENCE { algorithm ALGORITHM.&id( {AlgoSet} ), parameters ALGORITHM.&Type( {AlgoSet}{@algorithm} ) OPTIONAL } END Lee, et al. Informational [Page 17] RFC 5794 The ARIA Encryption Algorithm March 2010 Authors' Addresses Jungkeun Lee National Security Research Institute P.O.Box 1, Yuseong, Daejeon, 305-350, Korea EMail: jklee@ensec.re.kr Jooyoung Lee National Security Research Institute P.O.Box 1, Yuseong, Daejeon, 305-350, Korea EMail: jlee05@ensec.re.kr Jaeheon Kim National Security Research Institute P.O.Box 1, Yuseong, Daejeon, 305-350, Korea EMail: jaeheon@ensec.re.kr Daesung Kwon National Security Research Institute P.O.Box 1, Yuseong, Daejeon, 305-350, Korea EMail: ds_kwon@ensec.re.kr Choonsoo Kim National Security Research Institute P.O.Box 1, Yuseong, Daejeon, 305-350, Korea EMail: jbr@ensec.re.kr Lee, et al. Informational [Page 18]