💾 Archived View for republic.circumlunar.space › users › johngodlee › posts › 2021-11-26-seosaw_shin… captured on 2023-09-28 at 16:19:31. Gemini links have been rewritten to link to archived content

View Raw

More Information

⬅️ Previous capture (2023-01-29)

-=-=-=-=-=-=-

SEOSAW plot metadata Shiny app

DATE: 2021-11-26

AUTHOR: John L. Godlee

I have built a web app[1] to make it easier to quickly filter plots in the SEOSAW network[2] based on plot metadata and attributes of the plot. I built the app using Shiny[3], which offers a neat solution for creating simple HTML5 web apps in R.

1: https://johngodlee.shinyapps.io/shiny_data_explorer/

2: https://seosaw.github.io/

3: https://shiny.rstudio.com/

I've pasted the code for the app below. The app is actually fairly simple. It has a sidebar with a bunch of sliders and dropdown checkbox options to filter a dataframe of plot metadata. The main panel has a map displaying the plot locations, with the points optionally shaded according to one of the fields of plot metadata. The map is built using leaflet[4], and pulls background tiles from mapbox[5]. Below the map is a table showing the selected plots with their metadata values.

4: https://rstudio.github.io/leaflet/

5: https://www.mapbox.com/

# Packages
library(shiny)
library(dplyr)
library(sf)
library(leaflet)
library(shinyWidgets)
library(DT)
library(scico)

# Import data
plots_clean_sf <- readRDS("plots_clean_sf.rds")
species <- readRDS("species.rds")

# Country names lookup 
africa_lookup <- readRDS("africa_lookup.rds")

# Column names lookup
column_lookup <- readRDS("column_lookup.rds")

# Construct mapbox URL 
mbox_base <- "https://api.mapbox.com/"
mbox_id <- "styles/v1/mapbox/streets-v11/tiles/{z}/{x}/{y}?access_token="
mbox_token <- "redacted"
mapbox_url <- paste0(mbox_base, mbox_id, mbox_token)

# Define some functions for inputs to cut down on code replication
pickerInputFunc <- function(id, name, choices, rem_na = FALSE) {
    out <- list(
      pickerInput(id, 
        column_lookup[[name]]$html,
        choices, 
        options = list(`actions-box` = TRUE, `live-search` = TRUE), 
        selected = choices, multiple = TRUE)
    )

    if (rem_na == TRUE) { 
      out[[2]] <- checkboxInput(paste0(id, "NA"), 
        label = paste("Include NA values?"), value = TRUE)
    }

    return(out)
}

sliderInputFunc <- function(id, name, x, rem_na = FALSE) {
  lo <- floor(min(x, na.rm = TRUE))
  hi <- ceiling(max(x, na.rm = TRUE))
  out <- list(
    numericRangeInput(id, 
      column_lookup[[name]]$html, 
      min = lo,
      max = hi,
      value = c(lo, hi)
    )
  )

  if (rem_na == TRUE) {
    out[[2]] <- checkboxInput(paste0(id, "NA"),
      label = paste("Include NA values?"), value = TRUE)
  }

  return(out)
}

# UI
ui <- fluidPage(
 tags$head(
    tags$style(HTML(".leaflet-container { background: white; border-radius: 5px; border: 1px solid black; }"))
  ),
  titlePanel(
    tagList(span("SEOSAW plot data explorer", 
        span(actionButton('more_info', 'More information'), 
          style = "position: absolute; right: 2em;")
        )
      ), 
    windowTitle = "SEOSAW plot data explorer"),
  sidebarLayout(
    sidebarPanel(
      style = "overflow-y: auto; height: 90vh;",
      selectInput("pointHiSel", "Shade points", 
        c("None", unname(unlist(lapply(column_lookup, "[[", "label")))), 
        selected = "None"),
      pickerInput("speciesSel", "Species", unique(species$species), 
        options = list(`actions-box` = TRUE, `live-search` = TRUE), 
        selected = unique(species$species), multiple = TRUE),
      pickerInputFunc("siteSel", "site", unique(plots_clean_sf$site)),
      pickerInputFunc("country_iso3Sel", "country_iso3", africa_lookup), 
      pickerInputFunc("prinvSel", "prinv", unique(plots_clean_sf$prinv)), 
      pickerInputFunc("permanentSel", "permanent", unique(plots_clean_sf$permanent)), 
      pickerInputFunc("plot_shapeSel", "plot_shape", unique(plots_clean_sf$plot_shape)), 
      pickerInputFunc("teow_biomeSel", "teow_biome", unique(plots_clean_sf$teow_biome), rem_na = TRUE),
      pickerInputFunc("whites_veg_minorSel", "whites_veg_minor", unique(plots_clean_sf$whites_veg_minor), rem_na = TRUE),
      sliderInputFunc("plot_areaSel", "plot_area", plots_clean_sf$plot_area),
      sliderInputFunc("longitudeSel", "longitude", plots_clean_sf$longitude),
      sliderInputFunc("latitudeSel", "latitude", plots_clean_sf$latitude),
      sliderInputFunc("elevationSel", "elevation", plots_clean_sf$elevation, rem_na = TRUE),
      sliderInputFunc("min_diam_threshSel", "min_diam_thresh", plots_clean_sf$min_diam_thresh, rem_na = TRUE),
      sliderInputFunc("ba_haSel", "ba_ha", plots_clean_sf$ba_ha),
      sliderInputFunc("agb_haSel", "agb_ha", plots_clean_sf$agb_ha, rem_na = TRUE),
      sliderInputFunc("n_stems_ge5Sel", "n_stems_ge5", plots_clean_sf$n_stems_ge5),
      sliderInputFunc("richnessSel", "richness", plots_clean_sf$richness), 
      sliderInputFunc("n_censusSel", "n_census", plots_clean_sf$n_census),
        sliderInputFunc("bio1Sel", "bio1", plots_clean_sf$bio1, rem_na = TRUE),
        sliderInputFunc("bio12Sel", "bio12", plots_clean_sf$bio12, rem_na = TRUE),
        sliderInputFunc("travel_time_citySel", "travel_time_city", plots_clean_sf$travel_time_city, rem_na = TRUE),
        sliderInputFunc("forest_heightSel", "forest_height", plots_clean_sf$forest_height, rem_na = TRUE),
        sliderInputFunc("soil_org_c_densitSel", "soil_org_c_densit", plots_clean_sf$soil_org_c_densit, rem_na = TRUE),
        sliderInputFunc("soil_sandSel", "soil_sand", plots_clean_sf$soil_sand, rem_na = TRUE)
    ),
    mainPanel(
      leafletOutput("mapOutput"),
      pickerInput("tableColSel", "Select columns",
        choices = unname(unlist(lapply(column_lookup, "[[", "label"))),
        selected = unlist(unname(lapply(column_lookup[c(
          "plot_id", "country_iso3", "prinv", "permanent", "plot_area", 
          "plot_shape", "min_diam_thresh", "n_census", "agb_ha", 
          "ba_ha", "n_stems_ge5", "richness")], "[[", "label"))),
        multiple = TRUE,
        options = list(`actions-box` = TRUE, `live-search` = TRUE)),
      DTOutput("tableOutput")
    )
  )
)

# Server
server <- function(input, output, session) {

  plotsFil <- reactive({
    plots_clean_sf %>% 
      filter(
        plot_id %in% unique(species$plot_id[species$species %in% input$speciesSel]), 
        site %in% na_if(input$siteSel, "NA"),
        country_iso3 %in%  na_if(input$country_iso3Sel, "NA"), 
        prinv %in% na_if(input$prinvSel, "NA"),
        permanent %in% na_if(input$permanentSel, "NA"),
        plot_shape %in% na_if(input$plot_shapeSel, "NA"),
        teow_biome %in% na_if(input$teow_biomeSel, "NA"),
        whites_veg_minor %in% na_if(input$whites_veg_minorSel, "NA"),
        between(plot_area, input$plot_areaSel[1],input$plot_areaSel[2]) | is.na(plot_area),
        between(longitude, input$longitudeSel[1],input$longitudeSel[2]) | is.na(longitude),
        between(latitude, input$latitudeSel[1],input$latitudeSel[2]) | is.na(latitude),
        between(min_diam_thresh, input$min_diam_threshSel[1],input$min_diam_threshSel[2]) | is.na(min_diam_thresh),
        between(ba_ha, input$ba_haSel[1], input$ba_haSel[2]) | is.na(ba_ha),
        between(agb_ha, input$agb_haSel[1], input$agb_haSel[2]) | is.na(agb_ha),
        between(n_stems_ge5, input$n_stems_ge5Sel[1], input$n_stems_ge5Sel[2]) | is.na(n_stems_ge5),
        between(richness, input$richnessSel[1], input$richnessSel[2]) | is.na(richness),
        between(n_census, input$n_censusSel[1], input$n_censusSel[2]) | is.na(n_census),
        between(bio1, input$bio1Sel[1], input$bio1Sel[2]) | is.na(bio1),
        between(bio12, input$bio12Sel[1], input$bio12Sel[2]) | is.na(bio12),
        between(travel_time_city, input$travel_time_citySel[1], input$travel_time_citySel[2]) | is.na(travel_time_city),
        between(elevation, input$elevationSel[1], input$elevationSel[2]) | is.na(elevation),
        between(forest_height, input$forest_heightSel[1], input$forest_heightSel[2]) | is.na(forest_height),
        between(soil_org_c_densit, input$soil_org_c_densitSel[1], input$soil_org_c_densitSel[2]) | is.na(soil_org_c_densit),
        between(soil_sand, input$soil_sandSel[1], input$soil_sandSel[2]) | is.na(soil_sand)
      ) %>%
      filter(if (!input$teow_biomeSelNA) !is.na(teow_biome) else TRUE) %>%
      filter(if (!input$whites_veg_minorSelNA) !is.na(whites_veg_minor) else TRUE) %>%
      filter(if (!input$min_diam_threshSelNA) !is.na(min_diam_thresh) else TRUE) %>%
      filter(if (!input$bio1SelNA) !is.na(bio1) else TRUE) %>%
      filter(if (!input$bio12SelNA) !is.na(bio12) else TRUE) %>%
      filter(if (!input$travel_time_citySelNA) !is.na(travel_time_city) else TRUE) %>%
      filter(if (!input$elevationSelNA) !is.na(elevation) else TRUE) %>%
      filter(if (!input$forest_heightSelNA) !is.na(forest_height) else TRUE) %>%
      filter(if (!input$soil_org_c_densitSelNA) !is.na(soil_org_c_densit) else TRUE) %>%
      filter(if (!input$soil_sandSelNA) !is.na(soil_sand) else TRUE)
  })

  output$mapOutput <- renderLeaflet({
    leaflet() %>%
      addTiles(urlTemplate = mapbox_url,
        options = tileOptions(
          maxZoom = 18
        )
      ) %>%
      setView(lng = 30, lat = -15, zoom = 4) 
  })

  toListen <- reactive({
    list(
      input$speciesSel,
      input$tableColSel,
      input$pointHiSel,
      input$siteSel,
      input$country_iso3Sel,
      input$prinvSel,
      input$plot_areaSel,
      input$permanentSel,
      input$plot_shapeSel,
      input$teow_biomeSel,
      input$teow_biomeSelNA,
      input$whites_veg_minorSel,
      input$whites_veg_minorSelNA,
      input$longitudeSel,
      input$latitudeSel,
      input$elevationSel,
      input$elevationSelNA,
      input$min_diam_threshSel,
      input$min_diam_threshSelNA,
      input$ba_haSel,
      input$agb_haSel,
      input$n_stems_ge5Sel,
      input$richnessSel,
      input$n_censusSel,
      input$bio1Sel,
      input$bio1SelNA,
      input$bio12Sel,
      input$bio12SelNA,
      input$travel_time_citySel,
      input$travel_time_citySelNA,
      input$forest_heightSel,
      input$forest_heightSelNA,
      input$soil_org_c_densitSel,
      input$soil_org_c_densitSelNA,
      input$soil_sandSel,
      input$soil_sandSelNA
    )
  })

  observeEvent(toListen(), { 
    leafletProxy("mapOutput") %>%
      clearMarkers() %>% 
      clearControls()
    if (nrow(plotsFil()) > 0) {
      if (input$pointHiSel != "None") {
        if (is.numeric(plotsFil()[[names(column_lookup)[
            unname(unlist(lapply(column_lookup, "[[", "label"))) == input$pointHiSel]]])) {
          pal <- colorNumeric(
            palette = scico(n = 100, palette = "imola"),
            domain = plotsFil()[[names(column_lookup)[
              unname(unlist(lapply(column_lookup, "[[", "label"))) == input$pointHiSel]]],
            na.color = "darkgrey"
          )
        } else {
          pal <- colorFactor(
            palette = scico(n = length(unique(plotsFil()[[names(column_lookup)[
                  unname(unlist(lapply(column_lookup, "[[", "label"))) == input$pointHiSel]]])), 
              palette = "imola"),
            domain = plotsFil()[[names(column_lookup)[
                  unname(unlist(lapply(column_lookup, "[[", "label"))) == input$pointHiSel]]]
          )
        }
        leafletProxy("mapOutput") %>%
          addCircleMarkers(data = plotsFil(),
            popup = ~label,
            radius = 4, color = "black", opacity = 1, weight = 1,
            fillOpacity = 1, 
            fillColor = ~pal(plotsFil()[[names(column_lookup)[
              unname(unlist(lapply(column_lookup, "[[", "label"))) == input$pointHiSel]]])) %>%
          addLegend(position = "bottomright", pal = pal, 
            values = plotsFil()[[names(column_lookup)[
                  unname(unlist(lapply(column_lookup, "[[", "label"))) == input$pointHiSel]]],
            title = unname(unlist(lapply(column_lookup, "[[", "html")))[
              unname(unlist(lapply(column_lookup, "[[", "label"))) == input$pointHiSel],
            opacity = 1)
      } else {
        leafletProxy("mapOutput") %>%
          addCircleMarkers(data = plotsFil(),
            popup = ~label,
            radius = 4, color = "black", opacity = 1, weight = 1,
            fillOpacity = 1, fillColor = "tomato")
      }
    }
  })

  observeEvent(toListen(), {
    plots_df <- plotsFil() %>%
      st_drop_geometry() %>%
      dplyr::select(names(column_lookup)[
        unlist(lapply(column_lookup, "[[", "label")) %in% input$tableColSel])

    names(plots_df) <- unlist(lapply(column_lookup, "[[", "label"))[
      match(names(plots_df), names(column_lookup))]

    output$tableOutput <- renderDT({ 
      datatable(plots_df, rownames = FALSE,
        options=list(autoWidth = TRUE, scrollX = TRUE)
      )
    })
  })

 observeEvent(input$more_info, {
  showModal(modalDialog(
      title = "",
      HTML(paste0(
          tags$p("This app is designed to provide quick filtering of the plot data in the SEOSAW network, based on various plot attributes and metadata."),
          tags$p("For more information on SEOSAW, visit: ", 
            tags$a(href = "https://seosaw.github.io", "https://seosaw.github.io", target="_blank")
            ),
          tags$p("Created by John L. Godlee (", 
            tags$a(href = "mailto:john.godlee@ed.ac.uk", "john.godlee@ed.ac.uk"),
            ")"))),
      easyClose = TRUE,
      footer = NULL
      ))
  })
}

shinyApp(ui, server)