💾 Archived View for republic.circumlunar.space › users › johngodlee › posts › 2021-03-20-split.gmi captured on 2023-09-28 at 16:20:02. Gemini links have been rewritten to link to archived content

View Raw

More Information

⬅️ Previous capture (2023-01-29)

-=-=-=-=-=-=-

Splitting a large woodland survey plot into 1 ha subdivisions

DATE: 2021-03-20

AUTHOR: John L. Godlee

In SEOSAW[1] we have a few very large woodland monitoring plots. Six 25 ha plots in Republic of Congo, a 10 ha plot in the Democratic Republic of Congo, and a 4 ha plot in South Africa. SEOSAW advocates for using 1 ha square plots (100x100 m) in most cases, as do many other similar ecological plot networks, because they are big enough to be linked to remote sensing data, and big enough to include what is normally a representative sample of the woodland.

1: https://seosaw.github.io

To increase the usefulness of the very large plots, we wanted to split them up into 1 ha square subdivisions, and attribute stems to each of these subdivisions based on stem location.

Here is the R function I wrote to split the plots:

#' Split large plots into 1 hectare squares 
#'
#' @param x dataframe of stem measurements
#' @param plot_data dataframe of plot measurements
#' @param dims named character vector of length 2, specifying the relationship
#'     between the xy stem grid coordinate system and the plot dimensions, i.e.
#'     does the x axis run along the plot length, or the plot width measurement
#' @param xy_zero_corner either "sw", "nw", "ne", "se", specifying the corner 
#'     of the grid coordinate system origin (0,0)
#' @param x_direction either "ew" (east-west) or "ns" (north-south), specifying 
#'     the direction of the x axis on the grid coordinate system from the 
#'     origin corner
#' @param subplot_size the length and width of square subplots, e.g. for 1 ha,
#'     100
#'
#' @return list: 
#'     1) updated dataframe of stem measurements with added \code{subdiv_id} to
#'     show which subdivision each stem belongs to.
#'     2) sf dataframe of approximated subplot polygons and their centres.
#'     3) updated dataframe of plot measurements with added \code{subdiv} to 
#'     show whether a plot has been subdivided, and \code{subdiv_id} to 
#'     identify new rows which are subdivided plots
#' 
#' @details This function will only split a plot if it is rectangular and the 
#'     area can be divided into 1 hectare squares without remainder.
#' 
#' @examples
#' 
#' 
#' @export
#' 
largePlotSplit <- function(x, plot_data, polys, stem_plot_id = "plot_id", 
  plot_plot_id = stem_plot_id, polys_plot_id = stem_plot_id,
  dims = c("plot_length" = "x_grid", "plot_width" = "y_grid"),
  xy_zero_corner = "sw", x_direction = "ew", subplot_size = 100) {

  # Check parameter specified correctly
  stopifnot(!any(is.na(names(dims))) & !is.null(names(dims)) & length(dims)==2)
  stopifnot(xy_zero_corner %in% c("sw", "se", "nw", "ne"))
  stopifnot(x_direction %in% c("ns", "ew"))

  # Subset plots which are the right dimensions to split and which contain xy grid coords
  plots_fil <- plot_data[
    !is.na(plot_data[[names(dims)[1]]]) &
    plot_data[[names(dims)[1]]] %% 100 == 0 &
    plot_data[[names(dims)[1]]] %/% 100 >=2 &
    !is.na(plot_data[[names(dims)[2]]]) &
    plot_data[[names(dims)[2]]] %% 100 == 0 &
    plot_data[[names(dims)[2]]] %/% 100 >=2 & 
    plot_data[[plot_plot_id]] %in% 
      unique(x[!is.na(x[[dims[1]]]) & !is.na(x[[dims[2]]]), stem_plot_id])
    ,]

  # Subset stems by plot IDs
  x_fil <- x[x[[stem_plot_id]] %in% plots_fil[[plot_plot_id]],]

  # Split stem measurements by plot
  x_split <- split(x_fil, x_fil[[stem_plot_id]])

  # For each plot:
  plot_out <- lapply(seq_along(x_split), function(y) {
    # New object, easier to work with
    x_split_iso <- as.data.frame(x_split[[y]])

    # Get plot ID
    plot_id <- unique(x_split_iso[[stem_plot_id]])

    # Throw warning if any stems not matched
    no_coords <- which(is.na(x_split_iso[[dims[1]]]) | is.na(x_split_iso[[dims[2]]]))
    if (length(no_coords) > 0) {
      warning(plot_id, ": discarded ", length(no_coords), 
        " stems with no XY grid coordinates")
    }

    x_split_fil <- x_split_iso[-no_coords,]

    # Define bins per plot
    cut_length <- plots_fil[plots_fil[[plot_plot_id]] == plot_id,names(dims)[1]] %/% subplot_size
    cut_width <- plots_fil[plots_fil[[plot_plot_id]] == plot_id,names(dims)[2]] %/% subplot_size

    bin_length <- seq(0, cut_length * subplot_size, by = subplot_size)
    bin_width <- seq(0, cut_width * subplot_size, by = subplot_size)

    # Classify each grid point by bins
    x_split_fil$length_bin <- cut(x_split_fil[[dims[1]]], bin_length)
    x_split_fil$width_bin <- cut(x_split_fil[[dims[2]]], bin_width)

    # Get factor labels
    length_bin_labels <- levels(x_split_fil$length_bin)
    width_bin_labels <- levels(x_split_fil$length_bin)

    # Deal with values slightly outside bins
    # Length
    poss_fix_length <- x_split_fil[is.na(x_split_fil$length_bin) & 
      !is.na(x_split_fil[[dims[1]]]), dims[1]]
    if (length(poss_fix_length) > 0) {
      bin_length_close <- closestMatch(bin_length, unlist(poss_fix_length))

      bin_length_labs <- sapply(bin_length_close, function(i) {
        if (i == min(bin_length)) {
          length_bin_labels[1]
        } else {
          length_bin_labels[which(i == bin_length) -1]
        }
      })

    x_split_fil[
      is.na(x_split_fil$length_bin) & 
      !is.na(x_split_fil[[dims[1]]]), "length_bin"] <- bin_length_labs
    }

    # Width
    poss_fix_width <- x_split_fil[is.na(x_split_fil$width_bin) & 
      !is.na(x_split_fil[[dims[2]]]), dims[2]]
    if (length(poss_fix_width) > 0) {
      bin_width_close <- closestMatch(bin_width, unlist(poss_fix_width))

      bin_width_labs <- sapply(bin_width_close, function(i) {
        if (i == min(bin_width)) {
          width_bin_labels[1]
        } else {
          width_bin_labels[which(i == bin_width)-1]
        }
      })

      x_split_fil[
        is.na(x_split_fil$width_bin) & 
        !is.na(x_split_fil[[dims[2]]]), "width_bin"] <- bin_width_labs
    }

    # For each unique combination of bins, make a subplot, with name
    y_split <- split(x_split_fil, list(x_split_fil$length_bin, x_split_fil$width_bin))

    poss_subsets <- paste0(plot_id, "_S", seq(length(y_split)))

    x_split_fil <- do.call(rbind, lapply(seq_along(y_split), function(z) {
      if (nrow(y_split[[z]]) > 0) {
        y_split[[z]]$subdiv_id <- poss_subsets[z]
        y_split[[z]]
      }
    }))

    # Filter polygons to current plot ID
    polys_fil <- polys[polys[[polys_plot_id]] == plot_id,]

    # Extract corners as dataframe
    polys_points <- as.data.frame(sf::st_coordinates(polys_fil)[1:4,1:2])

    # Get UTM zone of corners
    utm_string <- UTMProj4(latLong2UTM(mean(polys_points[,1]), mean(polys_points[,2])))

    # Convert polygons to UTM
    polys_utm <- sf::st_transform(polys_fil, utm_string)

    # Convert UTM polygons to points
    points_utm <- sf::st_cast(polys_utm, "POINT", warn = FALSE)[1:4,]

    # Extract coordinates as dataframe
    coords_utm <- as.data.frame(sf::st_coordinates(points_utm)[1:4,1:2])

    # Get zero and bearing point
    nw_outer <- sf::st_sfc(sf::st_point(
        x = c(mean(coords_utm$X) - 1000, mean(coords_utm$Y) + 1000)))
    ne_outer <- sf::st_sfc(sf::st_point(
        x = c(mean(coords_utm$X) + 1000, mean(coords_utm$Y) + 1000)))
    sw_outer <- sf::st_sfc(sf::st_point(
        x = c(mean(coords_utm$X) - 1000, mean(coords_utm$Y) - 1000)))
    se_outer <- sf::st_sfc(sf::st_point(
        x = c(mean(coords_utm$X) + 1000, mean(coords_utm$Y) - 1000)))

    if (xy_zero_corner == "sw") {
      match_point <- sw_outer
      other_point <- nw_outer
    } else if (xy_zero_corner == "nw") {
      match_point <- nw_outer
      other_point <- sw_outer
    } else if (xy_zero_corner == "ne") {
      match_point <- ne_outer
      other_point <- se_outer
    } else if (xy_zero_corner == "se") {
      match_point <- se_outer
      other_point <- ne_outer
    }

    # Set CRS
    sf::st_crs(other_point) <- sf::st_crs(points_utm)
    sf::st_crs(match_point) <- sf::st_crs(points_utm)

    # Get xy zero and opposite corner
    xy_zero <- points_utm[sf::st_nearest_feature(match_point, points_utm),]
    xy_1 <- points_utm[sf::st_nearest_feature(other_point, points_utm),]

    # Convert to WGS for geosphere compatibility
    xy_zero_wgs <- sf::st_coordinates(sf::st_transform(xy_zero, 4326))
    xy_1_wgs <- sf::st_coordinates(sf::st_transform(xy_1, 4326))

    # Get bearing between points
    xy_bearing <- geosphere::bearing(xy_zero_wgs, xy_1_wgs)

    # Make grid of 1 ha plots
    bbox_grid <- cbind(x = c(0, 0, max(bin_length), max(bin_length), 0), 
      y = c(0, max(bin_width), max(bin_width), 0, 0))
    bbox_sf <- sf::st_polygon(list(bbox_grid))
    polys_grid <- sf::st_make_grid(bbox_sf, cellsize = subplot_size)
    sf::st_crs(polys_grid) <- sf::st_crs(points_utm)

    # Rotate to angle and move to centre of original plot
    cent <- sf::st_centroid(sf::st_combine(points_utm))
    grid_cent <- sf::st_centroid(sf::st_combine(polys_grid))
    angle <- NISTunits::NISTdegTOradian(xy_bearing)
    polys_rot <- (polys_grid - grid_cent) * rot(angle) * 1 + cent
    sf::st_crs(polys_rot) <- sf::st_crs(cent)

    # Set order of subset IDs 
    byrow <- ifelse(x_direction == "ns", FALSE, TRUE)

    if (xy_zero_corner %in% c("se", "nw")) {
      ord <- cut_width:1
    } else { 
      ord <- 1:cut_width
    }

    if (xy_zero_corner %in% c("sw", "nw")) {
      subdiv_ids <- poss_subsets 
    } else { 
      subdiv_ids <- rev(poss_subsets)
    }

    # Create matrix of subset IDs
    subset_mat <- matrix(subdiv_ids, 
      nrow = cut_width, ncol = cut_length, byrow = byrow)[ord,]

    # Apply matrix to name polygons
    polys_rot_sf <- sf::st_sf(geometry = polys_rot, 
      plot_id = plot_id,
      subdiv_id = as.vector(t(subset_mat)))

    polys_rot_wgs <- sf::st_transform(polys_rot_sf, 4326)

    names(polys_rot_wgs)[1] <- plot_plot_id

    # Remove bins
    x_split_fil_clean <- x_split_fil[,!(names(x_split_fil) %in% 
      c("length_bin", "width_bin"))]

    # Add back in stems which had no grid coords
    x_split_iso$subdiv_id <- NA_character_

    x_split_out <- rbind(x_split_fil_clean, 
      x_split_iso[no_coords,names(x_split_fil_clean)])

    # Return list
    return(list(x_split_out, polys_rot_wgs))
  })

  # Bind all stems together
  stems_out <- do.call(rbind, lapply(plot_out, "[[", 1))

  # Bind back in stems from plots which weren't split
  if (nrow(x[!x[[stem_plot_id]] %in% plots_fil[[plot_plot_id]],]) > 0) {
    stems_non <- x[!x[[stem_plot_id]] %in% plots_fil[[plot_plot_id]],]
    stems_non$subdiv_id <- NA_character_

    stems_all <- rbind(stems_out, stems_non[,names(stems_out)])
  } else {
    stems_all <- stems_out
  }

  # Bind all polygons
  polys_out <- do.call(rbind, lapply(plot_out, "[[", 2))

  # Add centres to polygons
  centres <- suppressWarnings(
    as.data.frame(st_coordinates(st_centroid(polys_out))))
  names(centres) <- c("longitude_of_centre", "latitude_of_centre")
  polys_out <- cbind(polys_out, centres)

  # Add subdiv column to plots table
  plot_data$subdiv <- ifelse(plot_data[[plot_plot_id]] %in% 
    polys_out[[plot_plot_id]], TRUE, FALSE)

  # Add subdivided columns to plots data
  subdiv_out <- merge(st_drop_geometry(polys_out), 
    plot_data[,!names(plot_data) %in% c("longitude_of_centre", "latitude_of_centre")],
    by = plot_plot_id, all.x = TRUE)

  subdiv_out[subdiv_out$subdiv_id %in% polys_out$subdiv_id, "plot_area"] <- subplot_size * subplot_size / 10000
  subdiv_out[subdiv_out$subdiv_id %in% polys_out$subdiv_id, "plot_length"] <- subplot_size
  subdiv_out[subdiv_out$subdiv_id %in% polys_out$subdiv_id, "plot_width"] <- subplot_size
  subdiv_out[subdiv_out$subdiv_id %in% polys_out$subdiv_id, "plot_perimeter"] <- subplot_size * 4
  subdiv_out[subdiv_out$subdiv_id %in% polys_out$subdiv_id, "subdiv"] <- FALSE 
  plot_data$subdiv_id <- NA_character_

  plot_data_out <- rbind(plot_data, subdiv_out[,names(plot_data)])

  # Return list of output
  return(list(stems_all, polys_out, plot_data_out))
}

Hopefully the comments explain everything, but this function is quite complicated, and I'm proud of it, so I'll describe it step by step.

1. Find which plots are suitable for splitting. Plots must be rectangular, larger than 2 ha, the plot length and width must be divisible without remainder into 100 m lengths, and there must be at least one stem in the plot with grid coordinates. Then, for each suitable plot:

2. Assign each stem to 100 m bins in the X and Y direction, using cut().

3. For stems with grid coordinates slightly outside the plot boundary (this is often a problem when converting from lat-long to grid coordinates), find the closest bin, using a separate function called closestMatch(), see below for more details.

4. For each unique combination of bins, make a subdivision ID, and assign names based on the direction of stem coordinate progression and which corner the stem coordinate system originates from, referencing the x_direction and xy_zero_corner function parameters.

5. Make a grid of 1 ha square polygons from the plot dimensions, using sf::st_make_grid(). Then rotate the polygon grid and move to the centre of the existing plot polygon.

6. Name each of the subdivision polygons with the subdiv_id used for the stems.

7. Return a dataframe of stem measurements with subdiv_id values for each stem, and an {sf} object with the subdivision polygons and their centres.

The plot below illustrates a 4 ha plot that has been split into four 1 ha subdivisions using the above methods.

library(ggplot2)
library(ggnewscale)
library(viridis)

ggplot() + 
  geom_sf(data = polys_sf, colour = "black", size = 2, fill = NA) + 
  geom_sf(data = out[[2]], aes(colour = subdiv_id), size = 1.5, fill = NA) + 
  new_scale_colour() + 
  geom_point(data = out[[1]], 
    aes(x = longitude, y = latitude, colour = x_grid, shape = subdiv_id)) + 
  scale_colour_viridis() + 
  theme_bw() + 
  labs(x = "", y = "")

4 ha plot split, with stem locations

Finally, here is the closestMatch() function:

#' Find closest match in a vector
#'
#' @param x numeric vector 
#' @param y vector of numeric values, each of which be matched with the closest
#'     value in \code{x}
#'
#' @return numeric vector of values of \code{x} that are closest to each 
#'     element of \code{y}
#' 
#' @keywords internal
#' @noRd
#' 
closestMatch <- function(x, y) {
    unlist(lapply(y, function(i) {
    x[which(abs(x-i) == min(abs(x-i)))]
  }))
}