💾 Archived View for republic.circumlunar.space › users › johngodlee › posts › 2020-07-05-corrplot.gm… captured on 2023-09-28 at 16:20:30. Gemini links have been rewritten to link to archived content
⬅️ Previous capture (2021-12-04)
-=-=-=-=-=-=-
DATE: 2020-07-05
AUTHOR: John L. Godlee
I needed to make a correlation matrix plot to show the relationships between all variables in a structural equation model I was writing. I created a function which takes a dataframe of numeric variables and returns a ggplot2 object.
#' Create a pretty correlation matrix plot #' #' @param x dataframe of numeric variables to correlate #' #' @return ggplot object with correlogram #' #' @examples #' data(iris) #' corrplot(iris[,1:4]) #' #' @import ggplot2 #' @importFrom psych corr.test #' corrplot <- function(x, col = c("red", "white", "blue"), ...) { corr <- psych::corr.test(x, ...) corr_ci <- data.frame(raw.lower = corr$ci$lower, raw.r = corr$ci$r, raw.upper = corr$ci$upper, raw.p = corr$ci$p, adj.lower = corr$ci.adj$lower.adj, adj.upper = corr$ci.adj$upper.adj) corr_ci$vars <- row.names(corr_ci) corr_ci$conf_x <- unlist(sapply(1:(length(x)-1), function(i){ c(1:(length(x)-1))[i:(length(x)-1)] })) + 1 rev_mat <- (length(x)-1):1 corr_ci$conf_y <- unlist(sapply(1:(length(x)-1), function(i){ rep(i, times = rev_mat[i]) })) n_seq <- 2:length(x) corr_ci$y_var <- unlist(sapply(1:(length(x)-1), function(i){ rep(row.names(corr[[1]])[i], rev_mat[i]) })) corr_ci$x_var <- unlist(sapply(1:(length(x)-1), function(i){ row.names(corr[[1]])[n_seq[i]:length(x)] })) corr_ci$x_var <- factor(corr_ci$x_var, levels = unique(corr_ci$x_var)) corr_ci$y_var <- factor(corr_ci$y_var, levels = unique(corr_ci$y_var)) corr_ci$conf <- (corr_ci$raw.lower > 0) == (corr_ci$raw.upper > 0) corr_ci$raw.r <- round(corr_ci$raw.r, 2) ggplot2::ggplot() + ggplot2::geom_tile(data = corr_ci, ggplot2::aes(x = x_var, y = y_var, fill = raw.r), colour = "black") + ggplot2::geom_text(data = corr_ci, ggplot2::aes(x = x_var, y = y_var, label = raw.r), size = 3) + ggplot2::geom_point(data = corr_ci[corr_ci$conf == FALSE,], ggplot2::aes(x = x_var, y = y_var), fill = NA, colour = "black", shape = 21, size = 11) + ggplot2::scale_fill_gradient2(name = "r", low = col[1], mid = col[2], high = col[3]) + ggplot2::theme_classic() + ggplot2::labs(x = "", y = "") + ggplot2::coord_equal() + ggplot2::theme(legend.position = "none") }
corrplot(iris[,1:4])
Here is the actual plot I made for the publication, which additionally colours the axis text to group variables into latent constructs: