💾 Archived View for gemini.rmf-dev.com › repo › Vaati › Vgmi › files › fe61e27c313afc9819b9f12aaa335… captured on 2023-09-08 at 16:24:52. Gemini links have been rewritten to link to archived content

View Raw

More Information

⬅️ Previous capture (2023-03-20)

🚧 View Differences

-=-=-=-=-=-=-

Go Back

0 // Original source-code modified to add a list of modern full-width characters

1 /*

2 * This is an implementation of wcwidth() and wcswidth() (defined in

3 * IEEE Std 1002.1-2001) for Unicode.

4 *

5 * http://www.opengroup.org/onlinepubs/007904975/functions/wcwidth.html

6 * http://www.opengroup.org/onlinepubs/007904975/functions/wcswidth.html

7 *

8 * In fixed-width output devices, Latin characters all occupy a single

9 * "cell" position of equal width, whereas ideographic CJK characters

10 * occupy two such cells. Interoperability between terminal-line

11 * applications and (teletype-style) character terminals using the

12 * UTF-8 encoding requires agreement on which character should advance

13 * the cursor by how many cell positions. No established formal

14 * standards exist at present on which Unicode character shall occupy

15 * how many cell positions on character terminals. These routines are

16 * a first attempt of defining such behavior based on simple rules

17 * applied to data provided by the Unicode Consortium.

18 *

19 * For some graphical characters, the Unicode standard explicitly

20 * defines a character-cell width via the definition of the East Asian

21 * FullWidth (F), Wide (W), Half-width (H), and Narrow (Na) classes.

22 * In all these cases, there is no ambiguity about which width a

23 * terminal shall use. For characters in the East Asian Ambiguous (A)

24 * class, the width choice depends purely on a preference of backward

25 * compatibility with either historic CJK or Western practice.

26 * Choosing single-width for these characters is easy to justify as

27 * the appropriate long-term solution, as the CJK practice of

28 * displaying these characters as double-width comes from historic

29 * implementation simplicity (8-bit encoded characters were displayed

30 * single-width and 16-bit ones double-width, even for Greek,

31 * Cyrillic, etc.) and not any typographic considerations.

32 *

33 * Much less clear is the choice of width for the Not East Asian

34 * (Neutral) class. Existing practice does not dictate a width for any

35 * of these characters. It would nevertheless make sense

36 * typographically to allocate two character cells to characters such

37 * as for instance EM SPACE or VOLUME INTEGRAL, which cannot be

38 * represented adequately with a single-width glyph. The following

39 * routines at present merely assign a single-cell width to all

40 * neutral characters, in the interest of simplicity. This is not

41 * entirely satisfactory and should be reconsidered before

42 * establishing a formal standard in this area. At the moment, the

43 * decision which Not East Asian (Neutral) characters should be

44 * represented by double-width glyphs cannot yet be answered by

45 * applying a simple rule from the Unicode database content. Setting

46 * up a proper standard for the behavior of UTF-8 character terminals

47 * will require a careful analysis not only of each Unicode character,

48 * but also of each presentation form, something the author of these

49 * routines has avoided to do so far.

50 *

51 * http://www.unicode.org/unicode/reports/tr11/

52 *

53 * Markus Kuhn -- 2007-05-26 (Unicode 5.0)

54 *

55 * Permission to use, copy, modify, and distribute this software

56 * for any purpose and without fee is hereby granted. The author

57 * disclaims all warranties with regard to this software.

58 *

59 * Latest version: http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c

60 */

61

62 #include <wchar.h>

63

64 struct interval {

65 int first;

66 int last;

67 };

68

69 /* auxiliary function for binary search in interval table */

70 static int bisearch(wchar_t ucs, const struct interval *table, int max) {

71 int min = 0;

72 int mid;

73

74 if (ucs < table[0].first || ucs > table[max].last)

75 return 0;

76 while (max >= min) {

77 mid = (min + max) / 2;

78 if (ucs > table[mid].last)

79 min = mid + 1;

80 else if (ucs < table[mid].first)

81 max = mid - 1;

82 else

83 return 1;

84 }

85

86 return 0;

87 }

88

89

90 /* The following two functions define the column width of an ISO 10646

91 * character as follows:

92 *

93 * - The null character (U+0000) has a column width of 0.

94 *

95 * - Other C0/C1 control characters and DEL will lead to a return

96 * value of -1.

97 *

98 * - Non-spacing and enclosing combining characters (general

99 * category code Mn or Me in the Unicode database) have a

100 * column width of 0.

101 *

102 * - SOFT HYPHEN (U+00AD) has a column width of 1.

103 *

104 * - Other format characters (general category code Cf in the Unicode

105 * database) and ZERO WIDTH SPACE (U+200B) have a column width of 0.

106 *

107 * - Hangul Jamo medial vowels and final consonants (U+1160-U+11FF)

108 * have a column width of 0.

109 *

110 * - Spacing characters in the East Asian Wide (W) or East Asian

111 * Full-width (F) category as defined in Unicode Technical

112 * Report #11 have a column width of 2.

113 *

114 * - All remaining characters (including all printable

115 * ISO 8859-1 and WGL4 characters, Unicode control characters,

116 * etc.) have a column width of 1.

117 *

118 * This implementation assumes that wchar_t characters are encoded

119 * in ISO 10646.

120 */

121

122 int mk_wcwidth(wchar_t ucs)

123 {

124 static const struct interval doublewith[] = {

125 {0x1100, 0x115F}, {0x231A, 0x231B}, {0x2329, 0x232A},

126 {0x23E9, 0x23EC}, {0x23F0, 0x23F0}, {0x23F3, 0x23F3},

127 {0x25FD, 0x25FE}, {0x2614, 0x2615}, {0x2648, 0x2653},

128 {0x267F, 0x267F}, {0x2693, 0x2693}, {0x26A1, 0x26A1},

129 {0x26AA, 0x26AB}, {0x26BD, 0x26BE}, {0x26C4, 0x26C5},

130 {0x26CE, 0x26CE}, {0x26D4, 0x26D4}, {0x26EA, 0x26EA},

131 {0x26F2, 0x26F3}, {0x26F5, 0x26F5}, {0x26FA, 0x26FA},

132 {0x26FD, 0x26FD}, {0x2705, 0x2705}, {0x270A, 0x270B},

133 {0x2728, 0x2728}, {0x274C, 0x274C}, {0x274E, 0x274E},

134 {0x2753, 0x2755}, {0x2757, 0x2757}, {0x2795, 0x2797},

135 {0x27B0, 0x27B0}, {0x27BF, 0x27BF}, {0x2B1B, 0x2B1C},

136 {0x2B50, 0x2B50}, {0x2B55, 0x2B55}, {0x2E80, 0x2E99},

137 {0x2E9B, 0x2EF3}, {0x2F00, 0x2FD5}, {0x2FF0, 0x2FFB},

138 {0x3000, 0x303E}, {0x3041, 0x3096}, {0x3099, 0x30FF},

139 {0x3105, 0x312F}, {0x3131, 0x318E}, {0x3190, 0x31E3},

140 {0x31F0, 0x321E}, {0x3220, 0x3247}, {0x3250, 0x4DBF},

141 {0x4E00, 0xA48C}, {0xA490, 0xA4C6}, {0xA960, 0xA97C},

142 {0xAC00, 0xD7A3}, {0xF900, 0xFAFF}, {0xFE10, 0xFE19},

143 {0xFE30, 0xFE52}, {0xFE54, 0xFE66}, {0xFE68, 0xFE6B},

144 {0xFF01, 0xFF60}, {0xFFE0, 0xFFE6}, {0x16FE0, 0x16FE4},

145 {0x16FF0, 0x16FF1}, {0x17000, 0x187F7}, {0x18800, 0x18CD5},

146 {0x18D00, 0x18D08}, {0x1B000, 0x1B11E}, {0x1B150, 0x1B152},

147 {0x1B164, 0x1B167}, {0x1B170, 0x1B2FB}, {0x1F004, 0x1F004},

148 {0x1F0CF, 0x1F0CF}, {0x1F18E, 0x1F18E}, {0x1F191, 0x1F19A},

149 {0x1F200, 0x1F202}, {0x1F210, 0x1F23B}, {0x1F240, 0x1F248},

150 {0x1F250, 0x1F251}, {0x1F260, 0x1F265}, {0x1F300, 0x1F320},

151 {0x1F32D, 0x1F335}, {0x1F337, 0x1F37C}, {0x1F37E, 0x1F393},

152 {0x1F3A0, 0x1F3CA}, {0x1F3CF, 0x1F3D3}, {0x1F3E0, 0x1F3F0},

153 {0x1F3F4, 0x1F3F4}, {0x1F3F8, 0x1F43E}, {0x1F440, 0x1F440},

154 {0x1F442, 0x1F4FC}, {0x1F4FF, 0x1F53D}, {0x1F54B, 0x1F54E},

155 {0x1F550, 0x1F567}, {0x1F57A, 0x1F57A}, {0x1F595, 0x1F596},

156 {0x1F5A4, 0x1F5A4}, {0x1F5FB, 0x1F64F}, {0x1F680, 0x1F6C5},

157 {0x1F6CC, 0x1F6CC}, {0x1F6D0, 0x1F6D2}, {0x1F6D5, 0x1F6D7},

158 {0x1F6EB, 0x1F6EC}, {0x1F6F4, 0x1F6FC}, {0x1F7E0, 0x1F7EB},

159 {0x1F90C, 0x1F93A}, {0x1F93C, 0x1F945}, {0x1F947, 0x1F978},

160 {0x1F97A, 0x1F9CB}, {0x1F9CD, 0x1F9FF}, {0x1FA70, 0x1FA74},

161 {0x1FA78, 0x1FA7A}, {0x1FA80, 0x1FA86}, {0x1FA90, 0x1FAA8},

162 {0x1FAB0, 0x1FAB6}, {0x1FAC0, 0x1FAC2}, {0x1FAD0, 0x1FAD6},

163 {0x20000, 0x2FFFD}, {0x30000, 0x3FFFD},

164 };

165 /* sorted list of non-overlapping intervals of non-spacing characters */

166 /* generated by "uniset +cat=Me +cat=Mn +cat=Cf -00AD +1160-11FF +200B c" */

167 static const struct interval combining[] = {

168 { 0x0300, 0x036F }, { 0x0483, 0x0486 }, { 0x0488, 0x0489 },

169 { 0x0591, 0x05BD }, { 0x05BF, 0x05BF }, { 0x05C1, 0x05C2 },

170 { 0x05C4, 0x05C5 }, { 0x05C7, 0x05C7 }, { 0x0600, 0x0603 },

171 { 0x0610, 0x0615 }, { 0x064B, 0x065E }, { 0x0670, 0x0670 },

172 { 0x06D6, 0x06E4 }, { 0x06E7, 0x06E8 }, { 0x06EA, 0x06ED },

173 { 0x070F, 0x070F }, { 0x0711, 0x0711 }, { 0x0730, 0x074A },

174 { 0x07A6, 0x07B0 }, { 0x07EB, 0x07F3 }, { 0x0901, 0x0902 },

175 { 0x093C, 0x093C }, { 0x0941, 0x0948 }, { 0x094D, 0x094D },

176 { 0x0951, 0x0954 }, { 0x0962, 0x0963 }, { 0x0981, 0x0981 },

177 { 0x09BC, 0x09BC }, { 0x09C1, 0x09C4 }, { 0x09CD, 0x09CD },

178 { 0x09E2, 0x09E3 }, { 0x0A01, 0x0A02 }, { 0x0A3C, 0x0A3C },

179 { 0x0A41, 0x0A42 }, { 0x0A47, 0x0A48 }, { 0x0A4B, 0x0A4D },

180 { 0x0A70, 0x0A71 }, { 0x0A81, 0x0A82 }, { 0x0ABC, 0x0ABC },

181 { 0x0AC1, 0x0AC5 }, { 0x0AC7, 0x0AC8 }, { 0x0ACD, 0x0ACD },

182 { 0x0AE2, 0x0AE3 }, { 0x0B01, 0x0B01 }, { 0x0B3C, 0x0B3C },

183 { 0x0B3F, 0x0B3F }, { 0x0B41, 0x0B43 }, { 0x0B4D, 0x0B4D },

184 { 0x0B56, 0x0B56 }, { 0x0B82, 0x0B82 }, { 0x0BC0, 0x0BC0 },

185 { 0x0BCD, 0x0BCD }, { 0x0C3E, 0x0C40 }, { 0x0C46, 0x0C48 },

186 { 0x0C4A, 0x0C4D }, { 0x0C55, 0x0C56 }, { 0x0CBC, 0x0CBC },

187 { 0x0CBF, 0x0CBF }, { 0x0CC6, 0x0CC6 }, { 0x0CCC, 0x0CCD },

188 { 0x0CE2, 0x0CE3 }, { 0x0D41, 0x0D43 }, { 0x0D4D, 0x0D4D },

189 { 0x0DCA, 0x0DCA }, { 0x0DD2, 0x0DD4 }, { 0x0DD6, 0x0DD6 },

190 { 0x0E31, 0x0E31 }, { 0x0E34, 0x0E3A }, { 0x0E47, 0x0E4E },

191 { 0x0EB1, 0x0EB1 }, { 0x0EB4, 0x0EB9 }, { 0x0EBB, 0x0EBC },

192 { 0x0EC8, 0x0ECD }, { 0x0F18, 0x0F19 }, { 0x0F35, 0x0F35 },

193 { 0x0F37, 0x0F37 }, { 0x0F39, 0x0F39 }, { 0x0F71, 0x0F7E },

194 { 0x0F80, 0x0F84 }, { 0x0F86, 0x0F87 }, { 0x0F90, 0x0F97 },

195 { 0x0F99, 0x0FBC }, { 0x0FC6, 0x0FC6 }, { 0x102D, 0x1030 },

196 { 0x1032, 0x1032 }, { 0x1036, 0x1037 }, { 0x1039, 0x1039 },

197 { 0x1058, 0x1059 }, { 0x1160, 0x11FF }, { 0x135F, 0x135F },

198 { 0x1712, 0x1714 }, { 0x1732, 0x1734 }, { 0x1752, 0x1753 },

199 { 0x1772, 0x1773 }, { 0x17B4, 0x17B5 }, { 0x17B7, 0x17BD },

200 { 0x17C6, 0x17C6 }, { 0x17C9, 0x17D3 }, { 0x17DD, 0x17DD },

201 { 0x180B, 0x180D }, { 0x18A9, 0x18A9 }, { 0x1920, 0x1922 },

202 { 0x1927, 0x1928 }, { 0x1932, 0x1932 }, { 0x1939, 0x193B },

203 { 0x1A17, 0x1A18 }, { 0x1B00, 0x1B03 }, { 0x1B34, 0x1B34 },

204 { 0x1B36, 0x1B3A }, { 0x1B3C, 0x1B3C }, { 0x1B42, 0x1B42 },

205 { 0x1B6B, 0x1B73 }, { 0x1DC0, 0x1DCA }, { 0x1DFE, 0x1DFF },

206 { 0x200B, 0x200F }, { 0x202A, 0x202E }, { 0x2060, 0x2063 },

207 { 0x206A, 0x206F }, { 0x20D0, 0x20EF }, { 0x302A, 0x302F },

208 { 0x3099, 0x309A }, { 0xA806, 0xA806 }, { 0xA80B, 0xA80B },

209 { 0xA825, 0xA826 }, { 0xFB1E, 0xFB1E }, { 0xFE00, 0xFE0F },

210 { 0xFE20, 0xFE23 }, { 0xFEFF, 0xFEFF }, { 0xFFF9, 0xFFFB },

211 { 0x10A01, 0x10A03 }, { 0x10A05, 0x10A06 }, { 0x10A0C, 0x10A0F },

212 { 0x10A38, 0x10A3A }, { 0x10A3F, 0x10A3F }, { 0x1D167, 0x1D169 },

213 { 0x1D173, 0x1D182 }, { 0x1D185, 0x1D18B }, { 0x1D1AA, 0x1D1AD },

214 { 0x1D242, 0x1D244 }, { 0xE0001, 0xE0001 }, { 0xE0020, 0xE007F },

215 { 0xE0100, 0xE01EF }

216 };

217

218 /* test for 8-bit control characters */

219 if (ucs == 0)

220 return 0;

221 if (ucs < 32 || (ucs >= 0x7f && ucs < 0xa0))

222 return -1;

223

224 /* binary search in table of non-spacing characters */

225 if (bisearch(ucs, combining,

226 sizeof(combining) / sizeof(struct interval) - 1))

227 return 0;

228

229 /* binary search in table of double-width characters */

230 if (bisearch(ucs, doublewith,

231 sizeof(doublewith) / sizeof(struct interval) - 1))

232 return 2;

233

234 /* if we arrive here, ucs is not a combining or C0/C1 control character */

235

236 return 1 +

237 (ucs >= 0x1100 &&

238 (ucs <= 0x115f || /* Hangul Jamo init. consonants */

239 ucs == 0x2329 || ucs == 0x232a ||

240 (ucs >= 0x2e80 && ucs <= 0xa4cf &&

241 ucs != 0x303f) || /* CJK ... Yi */

242 (ucs >= 0xac00 && ucs <= 0xd7a3) || /* Hangul Syllables */

243 (ucs >= 0xf900 && ucs <= 0xfaff) || /* CJK Compatibility Ideographs */

244 (ucs >= 0xfe10 && ucs <= 0xfe19) || /* Vertical forms */

245 (ucs >= 0xfe30 && ucs <= 0xfe6f) || /* CJK Compatibility Forms */

246 (ucs >= 0xff00 && ucs <= 0xff60) || /* Fullwidth Forms */

247 (ucs >= 0xffe0 && ucs <= 0xffe6) ||

248 (ucs >= 0x20000 && ucs <= 0x2fffd) ||

249 (ucs >= 0x30000 && ucs <= 0x3fffd)));

250 }

251

252 int mk_wcswidth(const wchar_t *pwcs, size_t n)

253 {

254 int w, width = 0;

255

256 for (;*pwcs && n-- > 0; pwcs++)

257 if ((w = mk_wcwidth(*pwcs)) < 0)

258 return -1;

259 else

260 width += w;

261

262 return width;

263 }

264

265

266 /*

267 * The following functions are the same as mk_wcwidth() and

268 * mk_wcswidth(), except that spacing characters in the East Asian

269 * Ambiguous (A) category as defined in Unicode Technical Report #11

270 * have a column width of 2. This variant might be useful for users of

271 * CJK legacy encodings who want to migrate to UCS without changing

272 * the traditional terminal character-width behaviour. It is not

273 * otherwise recommended for general use.

274 */

275 int mk_wcwidth_cjk(wchar_t ucs)

276 {

277 /* sorted list of non-overlapping intervals of East Asian Ambiguous

278 * characters, generated by "uniset +WIDTH-A -cat=Me -cat=Mn -cat=Cf c" */

279 static const struct interval ambiguous[] = {

280 { 0x00A1, 0x00A1 }, { 0x00A4, 0x00A4 }, { 0x00A7, 0x00A8 },

281 { 0x00AA, 0x00AA }, { 0x00AE, 0x00AE }, { 0x00B0, 0x00B4 },

282 { 0x00B6, 0x00BA }, { 0x00BC, 0x00BF }, { 0x00C6, 0x00C6 },

283 { 0x00D0, 0x00D0 }, { 0x00D7, 0x00D8 }, { 0x00DE, 0x00E1 },

284 { 0x00E6, 0x00E6 }, { 0x00E8, 0x00EA }, { 0x00EC, 0x00ED },

285 { 0x00F0, 0x00F0 }, { 0x00F2, 0x00F3 }, { 0x00F7, 0x00FA },

286 { 0x00FC, 0x00FC }, { 0x00FE, 0x00FE }, { 0x0101, 0x0101 },

287 { 0x0111, 0x0111 }, { 0x0113, 0x0113 }, { 0x011B, 0x011B },

288 { 0x0126, 0x0127 }, { 0x012B, 0x012B }, { 0x0131, 0x0133 },

289 { 0x0138, 0x0138 }, { 0x013F, 0x0142 }, { 0x0144, 0x0144 },

290 { 0x0148, 0x014B }, { 0x014D, 0x014D }, { 0x0152, 0x0153 },

291 { 0x0166, 0x0167 }, { 0x016B, 0x016B }, { 0x01CE, 0x01CE },

292 { 0x01D0, 0x01D0 }, { 0x01D2, 0x01D2 }, { 0x01D4, 0x01D4 },

293 { 0x01D6, 0x01D6 }, { 0x01D8, 0x01D8 }, { 0x01DA, 0x01DA },

294 { 0x01DC, 0x01DC }, { 0x0251, 0x0251 }, { 0x0261, 0x0261 },

295 { 0x02C4, 0x02C4 }, { 0x02C7, 0x02C7 }, { 0x02C9, 0x02CB },

296 { 0x02CD, 0x02CD }, { 0x02D0, 0x02D0 }, { 0x02D8, 0x02DB },

297 { 0x02DD, 0x02DD }, { 0x02DF, 0x02DF }, { 0x0391, 0x03A1 },

298 { 0x03A3, 0x03A9 }, { 0x03B1, 0x03C1 }, { 0x03C3, 0x03C9 },

299 { 0x0401, 0x0401 }, { 0x0410, 0x044F }, { 0x0451, 0x0451 },

300 { 0x2010, 0x2010 }, { 0x2013, 0x2016 }, { 0x2018, 0x2019 },

301 { 0x201C, 0x201D }, { 0x2020, 0x2022 }, { 0x2024, 0x2027 },

302 { 0x2030, 0x2030 }, { 0x2032, 0x2033 }, { 0x2035, 0x2035 },

303 { 0x203B, 0x203B }, { 0x203E, 0x203E }, { 0x2074, 0x2074 },

304 { 0x207F, 0x207F }, { 0x2081, 0x2084 }, { 0x20AC, 0x20AC },

305 { 0x2103, 0x2103 }, { 0x2105, 0x2105 }, { 0x2109, 0x2109 },

306 { 0x2113, 0x2113 }, { 0x2116, 0x2116 }, { 0x2121, 0x2122 },

307 { 0x2126, 0x2126 }, { 0x212B, 0x212B }, { 0x2153, 0x2154 },

308 { 0x215B, 0x215E }, { 0x2160, 0x216B }, { 0x2170, 0x2179 },

309 { 0x2190, 0x2199 }, { 0x21B8, 0x21B9 }, { 0x21D2, 0x21D2 },

310 { 0x21D4, 0x21D4 }, { 0x21E7, 0x21E7 }, { 0x2200, 0x2200 },

311 { 0x2202, 0x2203 }, { 0x2207, 0x2208 }, { 0x220B, 0x220B },

312 { 0x220F, 0x220F }, { 0x2211, 0x2211 }, { 0x2215, 0x2215 },

313 { 0x221A, 0x221A }, { 0x221D, 0x2220 }, { 0x2223, 0x2223 },

314 { 0x2225, 0x2225 }, { 0x2227, 0x222C }, { 0x222E, 0x222E },

315 { 0x2234, 0x2237 }, { 0x223C, 0x223D }, { 0x2248, 0x2248 },

316 { 0x224C, 0x224C }, { 0x2252, 0x2252 }, { 0x2260, 0x2261 },

317 { 0x2264, 0x2267 }, { 0x226A, 0x226B }, { 0x226E, 0x226F },

318 { 0x2282, 0x2283 }, { 0x2286, 0x2287 }, { 0x2295, 0x2295 },

319 { 0x2299, 0x2299 }, { 0x22A5, 0x22A5 }, { 0x22BF, 0x22BF },

320 { 0x2312, 0x2312 }, { 0x2460, 0x24E9 }, { 0x24EB, 0x254B },

321 { 0x2550, 0x2573 }, { 0x2580, 0x258F }, { 0x2592, 0x2595 },

322 { 0x25A0, 0x25A1 }, { 0x25A3, 0x25A9 }, { 0x25B2, 0x25B3 },

323 { 0x25B6, 0x25B7 }, { 0x25BC, 0x25BD }, { 0x25C0, 0x25C1 },

324 { 0x25C6, 0x25C8 }, { 0x25CB, 0x25CB }, { 0x25CE, 0x25D1 },

325 { 0x25E2, 0x25E5 }, { 0x25EF, 0x25EF }, { 0x2605, 0x2606 },

326 { 0x2609, 0x2609 }, { 0x260E, 0x260F }, { 0x2614, 0x2615 },

327 { 0x261C, 0x261C }, { 0x261E, 0x261E }, { 0x2640, 0x2640 },

328 { 0x2642, 0x2642 }, { 0x2660, 0x2661 }, { 0x2663, 0x2665 },

329 { 0x2667, 0x266A }, { 0x266C, 0x266D }, { 0x266F, 0x266F },

330 { 0x273D, 0x273D }, { 0x2776, 0x277F }, { 0xE000, 0xF8FF },

331 { 0xFFFD, 0xFFFD }, { 0xF0000, 0xFFFFD }, { 0x100000, 0x10FFFD }

332 };

333

334 /* binary search in table of non-spacing characters */

335 if (bisearch(ucs, ambiguous,

336 sizeof(ambiguous) / sizeof(struct interval) - 1))

337 return 2;

338

339 return mk_wcwidth(ucs);

340 }

341

342

343 int mk_wcswidth_cjk(const wchar_t *pwcs, size_t n)

344 {

345 int w, width = 0;

346

347 for (;*pwcs && n-- > 0; pwcs++)

348 if ((w = mk_wcwidth_cjk(*pwcs)) < 0)

349 return -1;

350 else

351 width += w;

352

353 return width;

354 }

355