💾 Archived View for gmi.noulin.net › mobileNews › 4758.gmi captured on 2023-09-08 at 17:54:06. Gemini links have been rewritten to link to archived content
⬅️ Previous capture (2023-01-29)
-=-=-=-=-=-=-
2013-06-19 10:05:19
Tom Stafford
Why do we like to listen to tunes when we exercise? Psychologist Tom Stafford
searches for answers within our brains, not the muscles we are exercising.
Perhaps you have a favourite playlist for going to the gym or the park. Even if
you haven't, you're certain to have seen joggers running along with headphones
in their ears. Lots of us love to exercise to music, feeling like it helps to
reduce effort and increase endurance. As a psychologist, the interesting thing
for me is not just whether music helps when exercising, but how it helps.
One thing is certain, the answer lies within our brains, not the muscles we are
exercising. A clue comes from an ingenious study, which managed to separate the
benefits of practicing a movement from the benefits of training the muscle that
does the movement. If you think that sounds peculiar, several studies have
shown that the act of imagining making a movement produces significant strength
gains. The benefit isn't a big as if you practiced making the movement for
real, but still the benefit of thinking about the movement can account for over
half of the benefit of practice. So asking people to carry out an imaginary
practice task allows us to see the benefit of just thinking about a movement,
and separates this from the benefit of making it.
Imaginary practice helps because it increases the strength of the signal sent
from the movement areas of the brain to the muscles. Using electrodes you can
record the size of this signal, and demonstrate that after imaginary practice
people are able to send a stronger, more coherent signal to the muscles.
The signals to move the muscles start in an area of the brain called,
unsurprisingly, the motor cortex. It's in the middle near the top. Part of this
motor area is known as the supplementary motor cortex. Originally thought to be
involved in more complex movements, this area has since been shown to be
particularly active at the point we re planning to make a movement, and
especially crucial for the timing of these actions. So, this specific part of
the brain does a very important job during exercise, it is responsible for
deciding exactly when to act. Once you've realised that a vital part of most
sporting performance is not just how fast or how strong you can move, but the
effort of deciding when to move, then you can begin to appreciate why music
might be so helpful.
The benefits of music are largest for self-paced exercise in other words
those sports where some of the work involved is in deciding when to act, as
well as how to act. This means all paced exercises, like rowing or running,
rather than un-paced exercises like judo or football. My speculation is that
music helps us perform by taking over a vital piece of the task of moving, the
rhythm travels in through our ears and down our auditory pathways to the
supplementary motor area. There it joins forces with brain activity that is
signalling when to move, helping us to keep pace by providing an external
timing signal. Or to use a sporting metaphor, it not only helps us out of the
starting blocks but it helps to keep us going until we reach the line.
Of course there are lots of other reasons we might exercise to music. For
example, a friend of mine who jogs told me: "I started running to music so I
didn't have to listen to my own laboured breathing." He might well have started
for that reason, but now I'll bet the rhythm of the music he listens to helps
him keep pace through his run. As one song might have put it, music lets us get
physical.