💾 Archived View for gemini.bortzmeyer.org › rfc-mirror › rfc5918.txt captured on 2023-06-14 at 16:21:49.

View Raw

More Information

⬅️ Previous capture (2021-11-30)

-=-=-=-=-=-=-







Internet Engineering Task Force (IETF)                          R. Asati
Request for Comments: 5918                                 Cisco Systems
Category: Standards Track                                       I. Minei
ISSN: 2070-1721                                         Juniper Networks
                                                               B. Thomas
                                                             August 2010


           Label Distribution Protocol (LDP) 'Typed Wildcard'
                    Forward Equivalence Class (FEC)

Abstract

   The Label Distribution Protocol (LDP) specification for the Wildcard
   Forward Equivalence Class (FEC) element has several limitations.
   This document addresses those limitations by defining a Typed
   Wildcard FEC Element and associated procedures.  In addition, it
   defines a new LDP capability to address backward compatibility.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc5918.



















Asati, et al.                Standards Track                    [Page 1]

RFC 5918                LDP 'Typed Wildcard' FEC             August 2010


Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

Table of Contents

   1. Introduction ....................................................3
   2. Specification Language ..........................................4
   3. The Typed Wildcard FEC Element ..................................4
   4. Procedures for the Typed Wildcard FEC Element ...................5
   5. Typed Wildcard FEC Capability ...................................6
   6. Typed Wildcard FEC Element for Prefix FEC Element ...............7
   7. Typed Wildcard FEC Element for Host and Wildcard FEC Elements ...8
   8. IANA Considerations .............................................8
   9. Security Considerations .........................................8
   10. Acknowledgments ................................................9
   11. References .....................................................9
      11.1. Normative References ......................................9
      11.2. Informative References ....................................9









Asati, et al.                Standards Track                    [Page 2]

RFC 5918                LDP 'Typed Wildcard' FEC             August 2010


1.  Introduction

   LDP [RFC5036] distributes labels for Forwarding Equivalence Classes
   (FECs).  LDP uses FEC TLVs in LDP messages to specify FECs.  An LDP
   FEC TLV includes one or more FEC elements.  A FEC element includes a
   FEC type and an optional type-dependent value.

   RFC 5036 specifies two FEC types (Prefix and Wildcard), and other
   documents specify additional FEC types; e.g., see [RFC4447] and
   [MLDP].

   As specified by RFC 5036, the Wildcard FEC Element refers to all FECs
   relative to an optional constraint.  The only constraint RFC 5036
   specifies is one that limits the scope of the Wildcard FEC Element to
   "all FECs bound to a given label".

   The RFC 5036 specification of the Wildcard FEC Element has the
   following deficiencies that limit its utility:

   1) The Wildcard FEC Element is untyped.  There are situations where
      it would be useful to be able to refer to all FECs of a given type
      (as another constraint).

   2) Use of the Wildcard FEC Element is limited to Label Withdraw and
      Label Release messages only.  There are situations where it would
      be useful to have a Wildcard FEC Element, with type constraint, in
      Label Request messages.

   This document:

      - addresses the above limitations by defining a Typed Wildcard FEC
        Element and procedures for its use.

      - specifies use of the LDP capability mechanism [RFC5561] at
        session establishment time for informing a peer that an LDP
        speaker is capable of handling the Typed Wildcard FEC.

      - specifies use of the Typed Wildcard FEC Element in a Label
        Request message.

      - specifies the Typed Wildcard FEC Element for the Prefix FEC
        Element specified by RFC 5036.

   Note that this document does not change procedures specified for the
   LDP Wildcard FEC Element by RFC 5036.






Asati, et al.                Standards Track                    [Page 3]

RFC 5918                LDP 'Typed Wildcard' FEC             August 2010


2.  Specification Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   LDP   - Label Distribution Protocol

   FEC   - Forwarding Equivalence Class

   TLV   - Type Length Value

   LSR   - Label Switching Router

3.  The Typed Wildcard FEC Element

   The Typed Wildcard FEC Element refers to all FECs of the specified
   type that meet the constraint.  It specifies a 'FEC Element Type' and
   an optional constraint, which is intended to provide additional
   information.

   The format of the Typed Wildcard FEC Element is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Typed (0x05)  | FEC Element   | Len FEC Type  |               |
      | Wildcard      | Type          | Info          |               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               |
      |                                                               |
      ~          Additional FEC Type-specific Information             ~
      |                  (Optional)                                   |
      |                                               +-+-+-+-+-+-+-+-+
      |                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 1: Typed Wildcard FEC Element

   Where:

      Typed Wildcard: One-octet FEC Element Type (0x05).

      FEC Element Type: One-octet FEC Element Type that specifies the
         FEC Element Type to be wildcarded.  Please see Section 3.4.1 of
         RFC 5036.






Asati, et al.                Standards Track                    [Page 4]

RFC 5918                LDP 'Typed Wildcard' FEC             August 2010


            Any (future) document specifying a new FEC Element Type (not
            defined in RFC 5036) should prescribe whether typed
            wildcarding is needed for that FEC Element Type.

      Len FEC Type Info:  One octet that specifies the length in octets
         of the FEC Type Specific information field.  It MUST be set to
         0 if there is no Additional FEC Type-specific Information.

      Additional FEC Type-specific Information (Optional): Additional
         information that is specific to the FEC Element Type and that
         is required to fully specify the Typed Wildcard.  If this field
         is absent, then all FECs of the specified FEC Type would be
         matched.

            Any (future) document specifying Typed wildcarding for any
            FEC Element Type should also specify the length and format
            of Additional FEC Type Specific Information, if included.

   This document specifies one FEC Element Type instance (e.g., Prefix
   FEC) for the 'Typed Wildcard FEC Element' in Section 6.

4.  Procedures for the Typed Wildcard FEC Element

   When a FEC TLV contains a Typed Wildcard FEC Element, the Typed
   Wildcard FEC Element MUST be the only FEC Element in the TLV.  If an
   LDP speaker receives a FEC TLV containing a Typed Wildcard FEC
   Element and any other FEC elements, then the LDP speaker should
   ignore the other FEC elements and continue processing as if the
   message only contains the Typed Wildcard FEC Element.

   An LDP implementation that supports the Typed Wildcard FEC Element
   MUST support its use in Label Request, Label Withdraw, and Label
   Release messages.

   An LDP implementation that supports the Typed Wildcard FEC Element
   MUST support it for every FEC Element Type defined in [RFC5036].

   Receipt of a Label Request message with a FEC TLV containing a Typed
   Wildcard FEC Element is interpreted as a request to send one or more
   Label Mappings for all FECs of the type specified by the FEC Element
   Type field in the Typed Wildcard FEC Element encoding.

   An LDP implementation that supports the Typed Wildcard FEC Element
   MUST support the following constraints whenever a Typed Wildcard FEC
   appears in a Label Withdraw or Label Release message:






Asati, et al.                Standards Track                    [Page 5]

RFC 5918                LDP 'Typed Wildcard' FEC             August 2010


   1) If the message carries an optional Label TLV, the Typed Wildcard
      FEC Element refers to all FECs of the specified FEC type bound to
      the specified label.

   2) If the message has no Label TLV, the Typed Wildcard FEC Element
      refers to all FECs of the specified FEC type.

   Backwards compatibility with a router not supporting the Typed
   Wildcard FEC element is ensured by the FEC procedures defined in RFC
   5036.  Quoting from RFC 5036:

      If it [an LSR] encounters a FEC Element type it cannot decode, it
      SHOULD stop decoding the FEC TLV, abort processing the message
      containing the TLV, and send an "Unknown FEC" Notification message
      to its LDP peer signaling an error.

   A router receiving a FEC TLV containing a Typed Wildcard FEC element
   for either a FEC Element Type that it doesn't support or for a FEC
   Element Type that doesn't support the use of wildcarding, MUST stop
   decoding the FEC TLV, abort processing the message containing the
   TLV, and send an "Unknown FEC" Notification message to its LDP peer
   to signal an error.

   A router receiving a FEC TLV containing a Typed Wildcard FEC element
   MAY also leverage mechanisms defined in [RFC5919] (say, if it had
   zero label binding for the requested FEC type, etc.).

5.  Typed Wildcard FEC Capability

   As noted above, RFC 5036 FEC procedures provide for backward
   compatibility with an LSR not supporting the Typed Wildcard FEC
   Element.  However, they don't provide means for an LSR that wishes to
   use the Typed Wildcard FEC Element to determine whether a peer
   supports it other than to send a message that uses the FEC Element
   and to wait and see how the peer responds.

   An LDP speaker that supports the Typed Wildcard FEC Element MUST
   inform its peers of the support by including a Typed Wildcard FEC
   Element Capability Parameter [RFC5561] in its Initialization messages
   only.

   The Capability Parameter for the Typed Wildcard FEC capability is a
   TLV with the following format:








Asati, et al.                Standards Track                    [Page 6]

RFC 5918                LDP 'Typed Wildcard' FEC             August 2010


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |U|F|Typed WCard FEC Cap(0x050B)|            Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |S| Reserved    |
      +-+-+-+-+-+-+-+-+

                  Figure 2: Typed Wildcard FEC Capability Format

   Where:

      U and F bits: MUST be 1 and 0, respectively, as per Section 3 of
         LDP Capabilities [RFC5561].

      Typed WCard FEC Cap: 0x050B

      Length: Two octets.  It MUST be set to 0x0001.

      S-bit: MUST be 1 (indicates that capability is being advertised).

6.  Typed Wildcard FEC Element for Prefix FEC Element

   RFC 5036 defines the Prefix FEC Element, but it does not specify a
   Typed Wildcard for it.  This section specifies the Typed Wildcard FEC
   Element for Prefix FEC Elements.

   The format of the Prefix FEC Typed Wildcard FEC Element ("Prefix FEC
   Wildcard" for short), based on Figure 1, is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Typed Wcard   | Type = Prefix |   Len = 2     |  Address...   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | ...Family     |
      +-+-+-+-+-+-+-+-+

           Figure 3: Format of Prefix FEC Element Using Typed Wildcard

   Where:

      FEC Element Type: "Prefix" FEC Element (0x02, per RFC 5036).

      Len FEC Type Info: Two octets.  It MUST be set to 0x0002.

      Address Family: Two-octet quantity containing a value from the
         "ADDRESS FAMILY NUMBERS" registry on http://www.iana.org.



Asati, et al.                Standards Track                    [Page 7]

RFC 5918                LDP 'Typed Wildcard' FEC             August 2010


   The procedures described in Section 4 apply to the Prefix FEC
   Wildcard processing.

7.  Typed Wildcard FEC Element for Host and Wildcard FEC Elements

   There is no need to specify Typed Wildcard FEC Elements for the Host
   FEC Element specified by [RFC3036], nor for the Wildcard FEC Element
   specified by RFC 5036.  The [RFC3036] Host FEC Element has been
   removed from RFC 5036, and the Wildcard FEC Element is untyped by
   definition.

   In other words, the 'FEC Element Type' field in 'Typed Wildcard FEC
   Element' MUST NOT be either 0x01 or 0x03.

8.  IANA Considerations

   This document introduces a new LDP FEC Element Type and a new LDP
   Capability, both of which have been assigned by IANA.

      IANA has assigned a 'Typed Wildcard FEC Element' code point (0x05)
      from the LDP FEC Type Name Space.  [RFC5036] partitions the FEC
      Type Name Space into 3 regions:  IETF Consensus region, First Come
      First Served region, and Private Use region.  The code point 0x05
      is from the IETF Consensus range.

      IANA has assigned a 'Typed Wildcard FEC Capability' code point
      (0x050B) from the TLV Type name space.  [RFC5036] partitions the
      TLV TYPE name space into 3 regions:  IETF Consensus region, Vendor
      Private Use region, and Experimental Use region.  The code point
      0x050B is from the IETF Consensus range.

9.  Security Considerations

   No security considerations beyond those that apply to the base LDP
   specification [RFC5036] and that are further described in [RFC5920]
   apply to use of the Typed Wildcard FEC Elements as described in this
   document.

   One could deduce that the security exposure is reduced by this
   document, since an LDP speaker using the Typed Wildcard FEC Element
   could use a single message to request, withdraw, or release all the
   label mappings of a particular type (a particular Address Family
   Identifier (AFI), for example), whereas an LDP speaker using the
   Wildcard FEC Element, as defined in the base LDP specification
   [RFC5036], could use a single message to request, withdraw, or
   release all the label mappings of all types (all AFIs, for example).





Asati, et al.                Standards Track                    [Page 8]

RFC 5918                LDP 'Typed Wildcard' FEC             August 2010


10.  Acknowledgments

   The authors would like to thank Yakov Rekhter for suggesting that the
   limitations of the Wildcard FEC be addressed.  Also, thanks to Adrian
   Farrel, Kamran Raza, and Richard L. Barnes for extensive review of
   this document.

11.  References

11.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC5036]  Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed.,
              "LDP Specification", RFC 5036, October 2007.

   [RFC5561]  Thomas, B., Raza, K., Aggarwal, S., Aggarwal, R., and JL.
              Le Roux, "LDP Capabilities", RFC 5561, July 2009.

11.2.  Informative References

   [RFC3036]  Andersson, L., Doolan, P., Feldman, N., Fredette, A., and
              B. Thomas, "LDP Specification", RFC 3036, January 2001.

   [RFC4447]  Martini, L., Ed., Rosen, E., El-Aawar, N., Smith, T., and
              G. Heron, "Pseudowire Setup and Maintenance Using the
              Label Distribution Protocol (LDP)", RFC 4447, April 2006.

   [RFC5919]  Asati, R., Mohapatra, P., Minei, I., and B. Thomas,
              "Signaling LDP Label Advertisement Completion", RFC 5919,
              August 2010.

   [RFC5920]  Fang, L., Ed., "Security Framework for MPLS and GMPLS
              Networks", RFC 5920, July 2010.

   [MLDP]     Minei, I., Ed., Kompella, K., Wijnands, I., Ed., and B.
              Thomas, "Label Distribution Protocol Extensions for Point-
              to-Multipoint and Multipoint-to-Multipoint Label Switched
              Paths", Work in Progress, July 2010.











Asati, et al.                Standards Track                    [Page 9]

RFC 5918                LDP 'Typed Wildcard' FEC             August 2010


Authors' Addresses

   Rajiv Asati
   Cisco Systems
   7025-6 Kit Creek Rd.
   Research Triangle Park, NC  27709-4987
   EMail: rajiva@cisco.com


   Ina Minei
   Juniper Networks
   1194 North Mathilda Ave.
   Sunnyvale, CA  94089
   EMail: ina@juniper.net


   Bob Thomas
   EMail: bobthomas@alum.mit.edu

































Asati, et al.                Standards Track                   [Page 10]