💾 Archived View for gemini.bortzmeyer.org › rfc-mirror › rfc3183.txt captured on 2023-05-24 at 20:47:36.

View Raw

More Information

⬅️ Previous capture (2021-11-30)

-=-=-=-=-=-=-







Network Working Group                                            T. Dean
Request for Comments: 3183                                    W. Ottaway
Category: Experimental                                           QinetiQ
                                                            October 2001


                 Domain Security Services using S/MIME

Status of this Memo

   This memo defines an Experimental Protocol for the Internet
   community.  It does not specify an Internet standard of any kind.
   Discussion and suggestions for improvement are requested.
   Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

Abstract

   This document describes how the S/MIME (Secure/Multipurpose Internet
   Mail Extensions) protocol can be processed and generated by a number
   of components of a communication system, such as message transfer
   agents, guards and gateways to deliver security services.  These
   services are collectively referred to as 'Domain Security Services'.

Acknowledgements

   Significant comments were made by Luis Barriga, Greg Colla, Trevor
   Freeman, Russ Housley, Dave Kemp, Jim Schaad and Michael Zolotarev.

1. Introduction

   The S/MIME [1] series of standards define a data encapsulation format
   for the provision of a number of security services including data
   integrity, confidentiality, and authentication.  S/MIME is designed
   for use by messaging clients to deliver security services to
   distributed messaging applications.

   The mechanisms described in this document are designed to solve a
   number of interoperability problems and technical limitations that
   arise when different security domains wish to communicate securely,
   for example when two domains use incompatible messaging technologies
   such as the X.400 series and SMTP/MIME, or when a single domain
   wishes to communicate securely with one of its members residing on an
   untrusted domain.  The scenarios covered by this document are
   domain-to-domain, individual-to-domain and domain-to-individual



Dean & Ottaway                Experimental                      [Page 1]

RFC 3183         Domain Security Services using S/MIME      October 2001


   communications.  This document is also applicable to organizations
   and enterprises that have internal PKIs which are not accessible by
   the outside world, but wish to interoperate securely using the S/MIME
   protocol.

   There are many circumstances when it is not desirable or practical to
   provide end-to-end (desktop-to-desktop) security services,
   particularly between different security domains.  An organization
   that is considering providing end-to-end security services will
   typically have to deal with some if not all of the following issues:

   1) Heterogeneous message access methods: Users are accessing mail
      using mechanisms which re-format messages, such as using Web
      browsers.  Message reformatting in the Message Store makes end-
      to-end encryption and signature validation impossible.

   2) Message screening and audit: Server-based mechanisms such as
      searching for prohibited words or other content, virus scanning,
      and audit, are incompatible with end-to-end encryption.

   3) PKI deployment issues: There may not be any certificate paths
      between two organizations.  Or an organization may be sensitive
      about aspects of its PKI and unwilling to expose them to outside
      access.  Also, full PKI deployment for all employees, may be
      expensive, not necessary or impractical for large organizations.
      For any of these reasons, direct end-to-end signature validation
      and encryption are impossible.

   4) Heterogeneous message formats: One organization using X.400 series
      protocols wishes to communicate with another using SMTP.  Message
      reformatting at gateways makes end-to-end encryption and signature
      validation impossible.

   This document describes an approach to solving these problems by
   providing message security services at the level of a domain or an
   organization.  This document specifies how these 'domain security
   services' can be provided using the S/MIME protocol.  Domain security
   services may replace or complement mechanisms at the desktop.  For
   example, a domain may decide to provide desktop-to-desktop signatures
   but domain-to-domain encryption services.  Or it may allow desktop-
   to-desktop services for intra-domain use, but enforce domain-based
   services for communication with other domains.

   Domain services can also be used by individual members of a
   corporation who are geographically remote and who wish to exchange
   encrypted and/or signed messages with their base.





Dean & Ottaway                Experimental                      [Page 2]

RFC 3183         Domain Security Services using S/MIME      October 2001


   Whether or not a domain based service is inherently better or worse
   than desktop based solutions is an open question.  Some experts
   believe that only end-to-end solutions can be truly made secure,
   while others believe that the benefits offered by such things as
   content checking at domain boundaries offers considerable increase in
   practical security for many real systems.  The additional service of
   allowing signature checking at several points on a communications
   path is also an extra benefit in many situations.  This debate is
   outside the scope of this document.  What is offered here is a set of
   tools that integrators can tailor in different ways to meet different
   needs in different circumstances.

   Message transfer agents (MTAs), guards, firewalls and protocol
   translation gateways all provide domain security services.  As with
   desktop based solutions, these components must be resilient against a
   wide variety of attacks intended to subvert the security services.
   Therefore, careful consideration should be given to security of these
   components, to make sure that their siting and configuration
   minimises the possibility of attack.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [2].

2. Overview of Domain Security Services

   This section gives an informal overview of the security services that
   are provided by S/MIME between different security domains.  These
   services are provided by a combination of mechanisms in the sender's
   and recipient's domains.

   Later sections describe definitively how these services map onto
   elements of the S/MIME protocol.

   The following security mechanisms are specified in this document:

   1. Domain signature
   2. Review signature
   3. Additional attributes signature
   4. Domain encryption and decryption

   The signature types defined in this document are referred to as
   DOMSEC defined signatures.








Dean & Ottaway                Experimental                      [Page 3]

RFC 3183         Domain Security Services using S/MIME      October 2001


   The term 'security domain' as used in this document is defined as a
   collection of hardware and personnel operating under a single
   security authority and performing a common business function.
   Members of a security domain will of necessity share a high degree of
   mutual trust, due to their shared aims and objectives.

   A security domain is typically protected from direct outside attack
   by physical measures and from indirect (electronic) attack by a
   combination of firewalls and guards at network boundaries.  The
   interface between two security domains is termed a 'security
   boundary'.  One example of a security domain is an organizational
   network ('Intranet').

2.1 Domain Signature

   A domain signature is an S/MIME signature generated on behalf of a
   set of users in a domain.  A domain signature can be used to
   authenticate information sent between domains or between a certain
   domain and one of its individuals, for example, when two 'Intranets'
   are connected using the Internet, or when an Intranet is connected to
   a remote user over the Internet.  It can be used when two domains
   employ incompatible signature schemes internally or when there are no
   certification links between their PKIs.  In both cases messages from
   the originator's domain are signed over the original message and
   signature (if present) using an algorithm, key, and certificate which
   can be processed by the recipient(s) or the recipient(s) domain.  A
   domain signature is sometimes referred to as an "organizational
   signature".

2.2 Review Signature

   A third party may review messages before they are forwarded to the
   final recipient(s) who may be in the same or a different security
   domain.  Organizational policy and good security practice often
   require that messages be reviewed before they are released to
   external recipients.  Having reviewed a message, an S/MIME signature
   is added to it - a review signature.  An agent could check the review
   signature at the domain boundary, to ensure that only reviewed
   messages are released.

2.3 Additional Attributes Signature

   A third party can add additional attributes to a signed message.  An
   S/MIME signature is used for this purpose - an additional attributes
   signature.  An example of an additional attribute is the 'Equivalent
   Label' attribute defined in ESS [3].





Dean & Ottaway                Experimental                      [Page 4]

RFC 3183         Domain Security Services using S/MIME      October 2001


2.4 Domain Encryption and Decryption

   Domain encryption is S/MIME encryption performed on behalf of a
   collection of users in a domain.  Domain encryption can be used to
   protect information between domains, for example, when two
   'Intranets' are connected using the Internet.  It can also be used
   when end users do not have PKI/encryption capabilities at the
   desktop, or when two domains employ incompatible encryption schemes
   internally.  In the latter case messages from the originator's domain
   are encrypted (or re-encrypted) using an algorithm, key, and
   certificate which can be decrypted by the recipient(s) or an entity
   in their domain.  This scheme also applies to protecting information
   between a single domain and one of its members when both are
   connected using an untrusted network, e.g., the Internet.

3. Mapping of the Signature Services to the S/MIME Protocol

   This section describes the S/MIME protocol elements that are used to
   provide the security services described above.  ESS [3] introduces
   the concept of triple-wrapped messages that are first signed, then
   encrypted, then signed again.  This document also uses this concept
   of triple-wrapping.  In addition, this document also uses the concept
   of 'signature encapsulation'.  'Signature encapsulation' denotes a
   signed or unsigned message that is wrapped in a signature, this
   signature covering both the content and the first (inner) signature,
   if present.

   Signature encapsulation MAY be performed on the inner and/or the
   outer signature of a triple-wrapped message.

   For example, the originator signs a message which is then
   encapsulated with an 'additional attributes' signature.  This is then
   encrypted.  A reviewer then signs this encrypted data, which is then
   encapsulated by a domain signature.

   There is a possibility that some policies will require signatures to
   be added in a specific order.  By only allowing signatures to be
   added by encapsulation it is possible to determine the order in which
   the signatures have been added.

   A DOMSEC defined signature MAY encapsulate a message in one of the
   following ways:

   1) An unsigned message has an empty signature layer added to it
      (i.e., the message is wrapped in a signedData that has a
      signerInfos which contains no elements).  This is to enable
      backward compatibility with S/MIME software that does not have a
      DOMSEC capability.  Since the signerInfos will contain no signers



Dean & Ottaway                Experimental                      [Page 5]

RFC 3183         Domain Security Services using S/MIME      October 2001


      the eContentType, within the EncapsulatedContentInfo, MUST be id-
      data as described in CMS [5].  However, the eContent field will
      contain the unsigned message instead of being left empty as
      suggested in section 5.2 in CMS [5].  This is so that when the
      DOMSEC defined signature is added, as defined in method 2) below,
      the signature will cover the unsigned message.

   2) Signature Encapsulation is used to wrap the original signed
      message with a DOMSEC defined signature.  This is so that the
      DOMSEC defined signature covers the message and all the previously
      added signatures.  Also, it is possible to determine that the
      DOMSEC defined signature was added after the signatures that are
      already there.

3.1 Naming Conventions and Signature Types

   An entity receiving an S/MIME signed message would normally expect
   the signature to be that of the originator of the message.  However,
   the message security services defined in this document require the
   recipient to be able to accept messages signed by other entities
   and/or the originator.  When other entities sign the message the name
   in the certificate will not match the message sender's name.  An
   S/MIME compliant implementation would normally flag a warning if
   there were a mismatch between the name in the certificate and the
   message sender's name.  (This check prevents a number of types of
   masquerade attack.)

   In the case of domain security services, this warning condition
   SHOULD be suppressed under certain circumstances.  These
   circumstances are defined by a naming convention that specifies the
   form that the signers name SHOULD adhere to.  Adherence to this
   naming convention avoids the problems of uncontrolled naming and the
   possible masquerade attacks that this would produce.

   As an assistance to implementation, a signed attribute is defined to
   be included in the S/MIME signature - the 'signature type' attribute.
   On receiving a message containing this attribute, the naming
   convention checks are invoked.

   Implementations conforming to this standard MUST support the naming
   convention for signature generation and verification.
   Implementations conforming to this standard MUST recognize the
   signature type attribute for signature verification.  Implementations
   conforming to this standard MUST support the signature type attribute
   for signature generation.






Dean & Ottaway                Experimental                      [Page 6]

RFC 3183         Domain Security Services using S/MIME      October 2001


3.1.1 Naming Conventions

   The following naming conventions are specified for agents generating
   signatures specified in this document:

   *  For a domain signature, an agent generating this signature MUST be
      named 'domain-signing-authority'

   *  For a review signature, an agent generating this signature MUST be
      named 'review-authority'.

   *  For an additional attributes signature, an agent generating this
      signature MUST be named 'attribute-authority'.

   This name shall appear as the 'common name (CN)' component of the
   subject field in the X.509 certificate.  There MUST be only one CN
   component present.  Additionally, if the certificate contains an RFC
   822 address, this name shall appear in the end entity component of
   the address - on the left-hand side of the '@' symbol.

   In the case of a domain signature, an additional naming rule is
   defined: the 'name mapping rule'.  The name mapping rule states that
   for a domain signing authority, the domain part of its name MUST be
   the same as, or an ascendant of, the domain name of the message
   originator(s) that it is representing.  The domain part is defined as
   follows:

   *  In the case of an X.500 distinguished subject name of an X.509
      certificate, the domain part is the country, organization,
      organizational unit, state, and locality components of the
      distinguished name.

   *  In the case of an RFC 2247 distinguished name, the domain part is
      the domain components of the distinguished name.

   *  If the certificate contains an RFC 822 address, the domain part is
      defined to be the RFC 822 address component on the right-hand side
      of the '@' symbol.

   For example, a domain signing authority acting on behalf of John Doe
   of the Acme corporation, whose distinguished name is 'cn=John Doe,
   ou=marketing,o=acme,c=us' and whose e-mail address is
   John.Doe@marketing.acme.com, could have a certificate containing a
   distinguished name of
   'cn=domain-signing-authority,o=acme,c=us' and an RFC 822 address of
   'domain-signing-authority@acme.com'.  If John Doe has an RFC 2247





Dean & Ottaway                Experimental                      [Page 7]

RFC 3183         Domain Security Services using S/MIME      October 2001


   defined address of 'cn=John Doe,dc=marketing,dc=acme,dc=us' then an
   address of 'cn=domain-signing-authority,dc=acme,dc=us' could be used
   to represent the domain signing authority.

   When the X.500 distinguished subject name has consecutive
   organizational units and/or localities it is important to understand
   the ordering of these values in order to determine if the domain part
   of the domain signature is an ascendant.  In this case, when parsing
   the distinguished subject name from the most significant component
   (i.e., country, locality or organization) the parsed organizational
   unit or locality is deemed to be the ascendant of consecutive
   (unparsed) organizational units or localities.

   When parsing an RFC 2247 subject name from the most significant
   component (i.e., the 'dc' entry that represents the country, locality
   or organization) the parsed 'dc' entry is deemed to be the ascendant
   of consecutive (unparsed) 'dc' entries.

   For example, a domain signing authority acting on behalf of John Doe
   of the Acme corporation, whose distinguished name is 'cn=John Doe,
   ou=marketing,ou=defence,o=acme,c=us' and whose e-mail address is
   John.Doe@marketing.defence.acme.com, could have a certificate
   containing a distinguished name of 'cn=domain-signing-
   authority,ou=defence,o=acme,c=us' and an RFC 822 address of 'domain-
   signing-authority@defence.acme.com'.  If John Doe has an RFC 2247
   defined address of 'cn=John
   Doe,dc=marketing,dc=defense,dc=acme,dc=us' then the domain signing
   authority could have a distinguished name of 'cn=domain-signing-
   authority,dc=defence,dc=acme,dc=us'.

   Any message received where the domain part of the domain signing
   agent's name does not match, or is not an ascendant of, the
   originator's domain name MUST be flagged.

   This naming rule prevents agents from one organization masquerading
   as domain signing authorities on behalf of another.  For the other
   types of signature defined in this document, no such named mapping
   rule is defined.

   Implementations conforming to this standard MUST support this name
   mapping convention as a minimum.  Implementations MAY choose to
   supplement this convention with other locally defined conventions.
   However, these MUST be agreed between sender and recipient domains
   prior to secure exchange of messages.

   On verifying the signature, a receiving agent MUST ensure that the
   naming convention has been adhered to.  Any message that violates the
   convention MUST be flagged.



Dean & Ottaway                Experimental                      [Page 8]

RFC 3183         Domain Security Services using S/MIME      October 2001


3.1.2 Signature Type Attribute

   An S/MIME signed attribute is used to indicate the type of signature.
   This should be used in conjunction with the naming conventions
   specified in the previous section.  When an S/MIME signed message
   containing the signature type attribute is received it triggers the
   software to verify that the correct naming convention has been used.

   The ASN.1 [4] notation of this attribute is: -

      SignatureType ::= SEQUENCE OF OBJECT IDENTIFIER

      id-sti  OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840)
                  rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 9 }

      -- signature type identifier

   If present, the SignatureType attribute MUST be a signed attribute,
   as defined in [5].  If the SignatureType attribute is absent and
   there are no further encapsulated signatures the recipient SHOULD
   assume that the signature is that of the message originator.

   All of the signatures defined here are generated and processed as
   described in [5].  They are distinguished by the presence of the
   following values in the SignatureType signed attribute:

      id-sti-domainSig OBJECT IDENTIFIER ::= { id-sti 2 }
      -- domain signature.

      id-sti-addAttribSig OBJECT IDENTIFIER ::= { id-sti 3 }
      -- additional attributes signature.

      id-sti-reviewSig OBJECT IDENTIFIER ::= { id-sti 4 }
      -- review signature.

   For completeness, an attribute type is also specified for an
   originator signature.  However, this signature type is optional.  It
   is defined as follows:

      id-sti-originatorSig OBJECT IDENTIFIER ::= { id-sti 1 }
      -- originator's signature.

   All signature types, except the originator type, MUST encapsulate
   other signatures.  Note a DOMSEC defined signature could be
   encapsulating an empty signature as defined in section 3.






Dean & Ottaway                Experimental                      [Page 9]

RFC 3183         Domain Security Services using S/MIME      October 2001


   A SignerInfo MUST NOT include multiple instances of SignatureType.  A
   signed attribute representing a SignatureType MAY include multiple
   instances of different SignatureType values as an AttributeValue of
   attrValues [5], as long as the SignatureType 'additional attributes'
   is not present.

   If there is more than one SignerInfo in a signerInfos (i.e., when
   different algorithms are used) then the SignatureType attribute in
   all the SignerInfos MUST contain the same content.

   The following sections describe the conditions under which each of
   these types of signature may be generated, and how they are
   processed.

3.2 Domain Signature Generation and Verification

   A 'domain signature' is a proxy signature generated on a user's
   behalf in the user's domain.  The signature MUST adhere to the naming
   conventions in 3.1.1, including the name mapping convention.  A
   'domain signature' on a message authenticates the fact that the
   message has been released from that domain.  Before signing, a
   process generating a 'domain signature' MUST first satisfy itself of
   the authenticity of the message originator.  This is achieved by one
   of two methods.  Either the 'originator's signature' is checked, if
   S/MIME signatures are used inside a domain.  Or if not, some
   mechanism external to S/MIME is used, such as the physical address of
   the originating client or an authenticated IP link.

   If the originator's authenticity is successfully verified by one of
   the above methods and all other signatures present are valid,
   including those that have been encrypted, a 'domain signature' can be
   added to a message.

   If a 'domain signature' is added and the message is received by a
   Mail List Agent (MLA) there is a possibility that the 'domain
   signature' will be removed.  To stop the 'domain signature' from
   being removed the steps in section 5 MUST be followed.

   An entity generating a domain signature MUST do so using a
   certificate containing a subject name that follows the naming
   convention specified in 3.1.1.

   If the originator's authenticity is not successfully verified or all
   the signatures present are not valid, a 'domain signature' MUST NOT
   be generated.






Dean & Ottaway                Experimental                     [Page 10]

RFC 3183         Domain Security Services using S/MIME      October 2001


   On reception, the 'domain signature' SHOULD be used to verify the
   authenticity of a message.  A check MUST be made to ensure that both
   the naming convention and the name mapping convention have been used
   as specified in this standard.

   A recipient can assume that successful verification of the domain
   signature also authenticates the message originator.

   If there is an originator signature present, the name in that
   certificate SHOULD be used to identify the originator.  This
   information can then be displayed to the recipient.

   If there is no originator signature present, the only assumption that
   can be made is the domain the message originated from.

   A domain signer can be assumed to have verified any signatures that
   it encapsulates.  Therefore, it is not necessary to verify these
   signatures before treating the message as authentic.  However, this
   standard does not preclude a recipient from attempting to verify any
   other signatures that are present.

   The 'domain signature' is indicated by the presence of the value id-
   sti-domainSig in a 'signature type' signed attribute.

   There MAY be one or more 'domain signature' signatures in an S/MIME
   encoding.

3.3 Additional Attributes Signature Generation and Verification

   The 'additional attributes' signature type indicates that the
   SignerInfo contains additional attributes that are associated with
   the message.

   All attributes in the applicable SignerInfo MUST be treated as
   additional attributes.  Successful verification of an 'additional
   attributes' signature means only that the attributes are
   authentically bound to the message.  A recipient MUST NOT assume that
   its successful verification also authenticates the message
   originator.

   An entity generating an 'additional attributes' signature MUST do so
   using a certificate containing a subject name that follows the naming
   convention specified in 3.1.1.  On reception, a check MUST be made to
   ensure that the naming convention has been used.







Dean & Ottaway                Experimental                     [Page 11]

RFC 3183         Domain Security Services using S/MIME      October 2001


   A signer MAY include any of the attributes listed in [3] or in this
   document when generating an 'additional attributes' signature.  The
   following attributes have a special meaning, when present in an
   'additional attributes' signature:

   1) Equivalent Label: label values in this attribute are to be treated
      as equivalent to the security label contained in an encapsulated
      SignerInfo, if present.

   2) Security Label: the label value indicates the aggregate
      sensitivity of the inner message content plus any encapsulated
      signedData and envelopedData containers.  The label on the
      original data is indicated by the value in the originator's
      signature, if present.

   An 'additional attributes' signature is indicated by the presence of
   the value id-sti-addAttribSig in a 'signature type' signed attribute.
   Other Object Identifiers MUST NOT be included in the sequence of OIDs
   if this value is present.

   There MAY be multiple 'additional attributes' signatures in an S/MIME
   encoding.

3.4 Review Signature Generation and Verification

   The review signature indicates that the signer has reviewed the
   message.  Successful verification of a review signature means only
   that the signer has approved the message for onward transmission to
   the recipient(s).  When the recipient is in another domain, a device
   on a domain boundary such as a Mail Guard or firewall may be
   configured to check review signatures.  A recipient MUST NOT assume
   that its successful verification also authenticates the message
   originator.

   An entity generating a signed review signature MUST do so using a
   certificate containing a subject name that follows the naming
   convention specified in 3.1.1.  On reception, a check MUST be made to
   ensure that the naming convention has been used.

   A review signature is indicated by the presence of the value id-sti-
   reviewSig in a 'signature type' signed attribute.

   There MAY be multiple review signatures in an S/MIME encoding.








Dean & Ottaway                Experimental                     [Page 12]

RFC 3183         Domain Security Services using S/MIME      October 2001


3.5 Originator Signature

   The 'originator signature' is used to indicate that the signer is the
   originator of the message and its contents.  It is included in this
   document for completeness only.  An originator signature is indicated
   either by the absence of the signature type attribute, or by the
   presence of the value id-sti-originatorSig in a 'signature type'
   signed attribute.

4. Encryption and Decryption

   Message encryption may be performed by a third party on behalf of a
   set of originators in a domain.  This is referred to as domain
   encryption.  Message decryption may be performed by a third party on
   behalf of a set of recipients in a domain.  This is referred to as
   domain decryption.  The third party that performs these processes is
   referred to in this section as a "Domain Confidentiality Authority"
   (DCA).  Both of these processes are described in this section.

   Messages may be encrypted for decryption by the final recipient
   and/or by a DCA in the recipient's domain.  The message may also be
   encrypted for decryption by a DCA in the originator's domain (e.g.,
   for content analysis, audit, key word scanning, etc.).  The choice of
   which of these is actually performed is a system specific issue that
   depends on system security policy.  It is therefore outside the scope
   of this document.  These processes of encryption and decryption
   processes are shown in the following table.

 --------------------------------------------------------------------
|                        | Recipient Decryption |  Domain Decryption |
|------------------------|----------------------|--------------------|
| Originator Encryption  |       Case(a)        |       Case(b)      |
| Domain Encryption      |       Case(c)        |       Case(d)      |
 --------------------------------------------------------------------

   Case (a), encryption of messages by the originator for decryption by
   the final recipient(s), is described in CMS [5].  In cases (c) and
   (d), encryption is performed not by the originator but by the DCA in
   the originator's domain. In cases (b) and (d), decryption is
   performed not by the recipient(s) but by the DCA in the recipient's
   domain.

   A client implementation that conforms to this standard MUST support
   case (b) for transmission, case (c) for reception and case (a) for
   transmission and reception.






Dean & Ottaway                Experimental                     [Page 13]

RFC 3183         Domain Security Services using S/MIME      October 2001


   A DCA implementation that conforms to this standard MUST support
   cases (c) and (d), for transmission, and cases (b) and (d) for
   reception.  In cases (c) and (d) the 'domain signature' SHOULD be
   applied before the encryption.  In cases (b) and (d) the message
   SHOULD be decrypted before the originators 'domain signature' is
   obtained and verified.

   The process of encryption and decryption is documented in CMS [5].
   The only additional requirement introduced by domain encryption and
   decryption is for greater flexibility in the management of keys, as
   described in the following subsections.  As with signatures, a naming
   convention and name mapping convention are used to locate the correct
   public key.

   The mechanisms described below are applicable both to key agreement
   and key transport systems, as documented in CMS [5].  The phrase
   'encryption key' is used as a collective term to cover the key
   management keys used by both techniques.

   The mechanisms below are also applicable to individual roving users
   who wish to encrypt messages that are sent back to base.

4.1 Domain Confidentiality Naming Conventions

   A DCA MUST be named 'domain-confidentiality-authority'.  This name
   MUST appear in the 'common name(CN)' component of the subject field
   in the X.509 certificate.  Additionally, if the certificate contains
   an RFC 822 address, this name MUST appear in the end entity part of
   the address, i.e., on the left-hand side of the '@' symbol.

   Along with this naming convention, an additional naming rule is
   defined:  the 'name mapping rule'.  The name mapping rule states that
   for a DCA, the domain part of its name MUST be the same as, or an
   ascendant of (as defined in section 3.1.1), the domain name of the
   set of entities that it represents.  The domain part is defined as
   follows:

   *  In the case of an X.500 distinguished name of an X.509
      certificate, the domain part is the country, organization,
      organizational unit, state, and locality components of the
      distinguished name.

   * In the case of an RFC 2247 distinguished name, the domain part is
      the domain components of the distinguished name.

   * If the certificate contains an RFC 822 address, the domain part is
      defined to be the RFC 822 address part on the right-hand side of
      the '@' symbol.



Dean & Ottaway                Experimental                     [Page 14]

RFC 3183         Domain Security Services using S/MIME      October 2001


   For example, a DCA acting on behalf of John Doe of the Acme
   corporation, whose distinguished name is 'cn=John Doe,ou=marketing,
   o=acme,c=us' and whose e-mail address is John.Doe@marketing.acme.com,
   could have a certificate containing a distinguished name of
   'cn=domain-confidentiality-authority,o=acme,c=us' and an e-mail
   address of 'domain-confidentiality-authority@acme.com'.  If John Doe
   has an RFC 2247 defined address of 'cn=John Doe,dc=marketing,
   dc=defense,dc=acme,dc=us' then the domain signing authority could
   have a distinguished name of
   'cn=domain-signing-authority,dc=defence,dc=acme,dc=us'.  The key
   associated with this certificate would be used for encrypting
   messages for John Doe.

   Any message received where the domain part of the domain encrypting
   agents name does not match, or is not an ascendant of, the domain
   name of the entities it represents MUST be flagged.

   This naming rule prevents messages being encrypted for the wrong
   domain decryption agent.

   Implementations conforming to this standard MUST support this name
   mapping convention as a minimum.  Implementations may choose to
   supplement this convention with other locally defined conventions.
   However, these MUST be agreed between sender and recipient domains
   prior to sending any messages.

4.2 Key Management for DCA Encryption

   At the sender's domain, DCA encryption is achieved using the
   recipient DCA's certificate or the end recipient's certificate.  For
   this, the encrypting process must be able to correctly locate the
   certificate for the corresponding DCA in the recipient's domain or
   the one corresponding to the end recipient.  Having located the
   correct certificate, the encryption process is then performed and
   additional information required for decryption is conveyed to the
   recipient in the recipientInfo field as specified in CMS [5].  A DCA
   encryption agent MUST be named according to the naming convention
   specified in section 4.1.  This is so that the corresponding
   certificate can be found.

   No specific method for locating the certificate to the corresponding
   DCA in the recipient's domain or the one corresponding to the end
   recipient is mandated in this document.  An implementation may choose
   to access a local certificate store to locate the correct
   certificate.  Alternatively, a X.500 or LDAP directory may be used in
   one of the following ways:





Dean & Ottaway                Experimental                     [Page 15]

RFC 3183         Domain Security Services using S/MIME      October 2001


   1. The directory may store the DCA certificate in the recipient's
      directory entry.  When the user certificate attribute is
      requested, this certificate is returned.

   2. The encrypting agent maps the recipient's name to the DCA name in
      the manner specified in 4.1.  The user certificate attribute
      associated with this directory entry is then obtained.

   This document does not mandate either of these processes.  Whichever
   one is used, the name mapping conventions must be adhered to, in
   order to maintain confidentiality.

   Having located the correct certificate, the encryption process is
   then performed.  A recipientInfo for the DCA or end recipient is then
   generated, as described in CMS [5].

   DCA encryption may be performed for decryption by the end recipient
   and/or by a DCA.  End recipient decryption is described in CMS [5].
   DCA decryption is described in section 4.3.

4.3 Key Management for DCA Decryption

   DCA decryption uses a private-key belonging to the DCA and the
   necessary information conveyed in the DCA's recipientInfo field.

   It should be noted that domain decryption can be performed on
   messages encrypted by the originator and/or by a DCA in the
   originator's domain.  In the first case, the encryption process is
   described in CMS [5]; in the second case, the encryption process is
   described in 4.2.

5. Applying a Domain Signature when Mail List Agents are Present.

   It is possible that a message leaving a DOMSEC domain may encounter a
   Mail List Agent (MLA) before it reaches the final recipient.  There
   is a possibility that this would result in the 'domain signature'
   being stripped off the message.  We do not want a MLA to remove the
   'domain signature'.  Therefore, the 'domain signature' must be
   applied to the message in such a way that will prevent a MLA from
   removing it.

   A MLA will search a message for the "outer" signedData layer, as
   defined in ESS [3] section 4.2, and strip off all signedData layers
   that encapsulate this "outer" signedData layer.  Where this "outer"
   signedData layer is found will depend on whether the message contains
   a mlExpansionHistory attribute or an envelopedData layer.





Dean & Ottaway                Experimental                     [Page 16]

RFC 3183         Domain Security Services using S/MIME      October 2001


   There is a possibility that a message leaving a DOMSEC domain has
   already been processed by a MLA, in which case a 'mlExpansionHistory'
   attribute will be present within the message.

   There is a possibility that the message will contain an envelopedData
   layer.  This will be the case when the message has been encrypted
   within the domain for the domain's "Domain Confidentiality
   Authority", see section 4.0, and, possibly, the final recipient.

   How the 'domain signature' is applied will depend on what is already
   present within the message.  Before the 'domain signature' can be
   applied the message MUST be searched for the "outer" signedData
   layer, this search is complete when one of the following is found: -

      -  The "outer" signedData layer that includes an
         mlExpansionHistory attribute or encapsulates an envelopedData
         object.
      -  An envelopedData layer.
      -  The original content (that is, a layer that is neither
         envelopedData nor signedData).

   If a signedData layer containing a mlExpansionHistory attribute has
   been found then: -

      1) Strip off the signedData layer (after remembering the included
         signedAttributes).

      2) Search the rest of the message until an envelopedData layer or
         the original content is found.

      3) a) If an envelopedData layer has been found then: -

            -  Strip off all the signedData layers down to the
               envelopedData layer.
            -  Locate the RecipientInfo for the local DCA and use the
               information it contains to obtain the message key.
            -  Decrypt the encryptedContent using the message key.
            -  Encapsulate the decrypted message with a 'domain
               signature'
            -  If local policy requires the message to be encrypted
               using S/MIME encryption before leaving the domain then
               encapsulate the 'domain signature' with an envelopedData
               layer containing RecipientInfo structures for each of the
               recipients and an originatorInfo value built from
               information describing this DCA.






Dean & Ottaway                Experimental                     [Page 17]

RFC 3183         Domain Security Services using S/MIME      October 2001


               If local policy does not require the message to be
               encrypted using S/MIME encryption but there is an
               envelopedData at a lower level within the message then
               the 'domain signature' MUST be encapsulated by an
               envelopedData as described above.

               An example when it may not be local policy to require
               S/MIME encryption is when there is a link crypto present.

      b) If an envelopedData layer has not been found then: -

            -  Encapsulate the new message with a 'domain signature'.

      4) Encapsulate the new message in a signedData layer, adding the
         signedAttributes from the signedData layer that contained the
         mlExpansionHistory attribute.

   If no signedData layer containing a mlExpansionHistory attribute has
   been found but an envelopedData has been found then: -

      1) Strip off all the signedData layers down to the envelopedData
         layer.
      2) Locate the RecipientInfo for the local DCA and use the
         information it contains to obtain the message key.
      3) Decrypt the encryptedContent using the message key.
      4) Encapsulate the decrypted message with a 'domain signature'
      5) If local policy requires the message to be encrypted before
         leaving the domain then encapsulate the 'domain signature' with
         an envelopedData layer containing RecipientInfo structures for
         each of the recipients and an originatorInfo value built from
         information describing this DCA.

         If local policy does not require the message to be encrypted
         using S/MIME encryption but there is an envelopedData at a
         lower level within the message then the 'domain signature' MUST
         be encapsulated by an envelopedData as described above.

   If no signedData layer containing a mlExpansionHistory attribute has
   been found and no envelopedData has been found then: -

      1) Encapsulate the message in a 'domain signature'.

5.1 Examples of Rule Processing

   The following examples help explain the above rules.  All of the
   signedData objects are valid and none of them are a domain signature.
   If a signedData object was a domain signature then it would not be
   necessary to validate any further signedData objects.



Dean & Ottaway                Experimental                     [Page 18]

RFC 3183         Domain Security Services using S/MIME      October 2001


   1) A message (S1 (Original Content)) (where S = signedData) in which
      the signedData does not include an mlExpansionHistory attribute is
      to have a 'domain signature' applied.  The signedData, S1, is
      verified.  No "outer" signedData is found, after searching for one
      as defined above, since the original content is found, nor is an
      envelopedData or a mlExpansionHistory attribute found.  A new
      signedData layer, S2, is created that contains a 'domain
      signature', resulting in the following message sent out of the
      domain (S2 (S1 (Original Content))).

   2) A message (S3 (S2 (S1 (Original Content))) in which none of the
      signedData layers includes an mlExpansionHistory attribute is to
      have a 'domain signature' applied.  The signedData objects S1, S2
      and S3 are verified.  There is not an original, "outer" signedData
      layer since the original content is found, nor is an envelopedData
      or a mlExpansionHistory attribute found.  A new signedData layer,
      S4, is created that contains a 'domain signature', resulting in
      the following message sent out of the domain (S4 (S3 (S2 (S1
      (Original Content))).

   3) A message (E1 (S1 (Original Content))) (where E = envelopedData)
      in which S1 does not include a mlExpansionHistory attribute is to
      have a 'domain signature' applied.  There is not an original,
      received "outer" signedData layer since the envelopedData, E1, is
      found at the outer layer.  The encryptedContent is decrypted.  The
      signedData, S1, is verified.  The decrypted content is wrapped in
      a new signedData layer, S2, which contains a 'domain signature'.
      If local policy requires the message to be encrypted, using S/MIME
      encryption, before it leaves the domain then this new message is
      wrapped in an envelopedData layer, E2, resulting in the following
      message sent out of the domain (E2 (S2 (S1 (Original Content)))),
      else the message is not wrapped in an envelopedData layer
      resulting in the following message (S2 (S1 (Original Content)))
      being sent.

   4) A message (S2 (E1 (S1 (Original Content)))) in which S2 includes a
      mlExpansionHistory attribute is to have a 'domain signature'
      applied.  The signedData object S2 is verified.  The
      mlExpansionHistory attribute is found in S2, so S2 is the "outer"
      signedData.  The signed attributes in S2 are remembered for later
      inclusion in the new outer signedData that is applied to the
      message.  S2 is stripped off and the message is decrypted.  The
      signedData object S1 is verified.  The decrypted message is
      wrapped in a signedData layer, S3, which contains a 'domain
      signature'.  If local policy requires the message to be encrypted,
      using S/MIME encryption, before it leaves the domain then this new
      message is wrapped in an envelopedData layer, E2.  A new
      signedData layer, S4, is then wrapped around the envelopedData,



Dean & Ottaway                Experimental                     [Page 19]

RFC 3183         Domain Security Services using S/MIME      October 2001


      E2, resulting in the following message sent out of the domain (S4
      (E2 (S3 (S1 (Original Content))))).  If local policy does not
      require the message to be encrypted, using S/MIME encryption,
      before it leaves the domain then the message is not wrapped in an
      envelopedData layer but is wrapped in a new signedData layer, S4,
      resulting in the following message sent out of the domain (S4 (S3
      (S1 (Original Content).  The signedData S4, in both cases,
      contains the signed attributes from S2.

   5) A message (S3 (S2 (E1 (S1 (Original Content))))) in which none of
      the signedData layers include a mlExpansionHistory attribute is to
      have a 'domain signature' applied.  The signedData objects S3 and
      S2 are verified.  When the envelopedData E1 is found the
      signedData objects S3 and S2 are stripped off.  The
      encryptedContent is decrypted.  The signedData object S1 is
      verified.  The decrypted content is wrapped in a new signedData
      layer, S4, which contains a 'domain signature'.  If local policy
      requires the message to be encrypted, using S/MIME encryption,
      before it leaves the domain then this new message is wrapped in an
      envelopedData layer, E2, resulting in the following message sent
      out of the domain (E2 (S4 (S1 (Original Content)))), else the
      message is not wrapped in an envelopedData layer resulting in the
      following message (S4 (S1 (Original Content))) being sent.

   6) A message (S3 (S2 (E1 (S1 (Original Content))))) in which S3
      includes a mlExpansionHistory attribute is to have a 'domain
      signature' applied.  The signedData objects S3 and S2 are
      verified.  The mlExpansionHistory attribute is found in S3, so S3
      is the "outer" signedData.  The signed attributes in S3 are
      remembered for later inclusion in the new  outer signedData that
      is applied to the message.  The signedData object S3 is stripped
      off.  When the envelopedData layer, E1, is found the signedData
      object S2 is stripped off.  The encryptedContent is decrypted.
      The signedData object S1 is verified.  The decrypted content is
      wrapped in a new signedData layer, S4, which contains a 'domain
      signature'.  If local policy requires the message to be encrypted,
      using S/MIME encryption, before it leaves the domain then this new
      message is wrapped in an envelopedData layer, E2.  A new
      signedData layer, S5, is then wrapped around the envelopedData,
      E2, resulting in the following message sent out of the domain (S5
      (E2 (S4 (S1 (Original Content))))).  If local policy does not
      require the message to be encrypted, using S/MIME encryption,
      before it leaves the domain then the message is not wrapped in an
      envelopedData layer but is wrapped in a new signedData layer, S5,
      resulting in the following message sent out of the domain (S5 (S4
      (S1 (Original Content).  The signedData S5, in both cases,
      contains the signed attributes from S3.




Dean & Ottaway                Experimental                     [Page 20]

RFC 3183         Domain Security Services using S/MIME      October 2001


   7) A message (S3 (E2 (S2 (E1 (S1 (Original Content)))))) in which S3
      does not include a mlExpansionHistory attribute is to have a
      'domain signature' applied.  The signedData object S3 is verified.
      When the envelopedData E2 is found the signedData object S3 is
      stripped off.  The encryptedContent is decrypted.  The signedData
      object S2 is verified, the envelopedData E1 is decrypted and the
      signedData object S1 is verified.  The signedData object S2 is
      wrapped in a new signedData layer S4, which contains a 'domain
      signature'.  Since there is an envelopedData E1 lower down in the
      message, the new message is wrapped in an envelopedData layer, E3,
      resulting in the following message sent out of the domain (E3 (S4
      (S2 (E1 (S1 (Original Content)))))).

6. Security Considerations

   This specification relies on the existence of several well known
   names, such as domain-confidentiality-authority.  Organizations must
   take care with these names, even if they do not support DOMSEC, so
   that certificates issued in these names are only issued to legitimate
   entities.  If this is not true then an individual could get a
   certificate associated with domain-confidentiality-authority@acme.com
   and as a result might be able to read messages the a DOMSEC client
   intended for others.

   Implementations MUST protect all private keys.  Compromise of the
   signer's private key permits masquerade.

   Similarly, compromise of the content-encryption key may result in
   disclosure of the encrypted content.

   Compromise of key material is regarded as an even more serious issue
   for domain security services than for an S/MIME client.  This is
   because compromise of the private key may in turn compromise the
   security of a whole domain.  Therefore, great care should be used
   when considering its protection.

   Domain encryption alone is not secure and should be used in
   conjunction with a domain signature to avoid a masquerade attack,
   where an attacker that has obtained a DCA certificate can fake a
   message to that domain pretending to be another domain.

   When an encrypted DOMSEC message is sent to an end user in such a way
   that the message is decrypted by the end users DCA the message will
   be in plain text and therefore confidentiality could be compromised.







Dean & Ottaway                Experimental                     [Page 21]

RFC 3183         Domain Security Services using S/MIME      October 2001


   If the recipient's DCA is compromised then the recipient can not
   guarantee the integrity of the message.  Furthermore, even if the
   recipient's DCA correctly verifies a message's signatures, then a
   message could be undetectably modified, when there are no signatures
   on a message that the recipient can verify.

7. DOMSEC ASN.1 Module

   DOMSECSyntax
    { iso(1) member-body(2) us(840) rsadsi(113549)
          pkcs(1) pkcs-9(9) smime(16) modules(0) domsec(10) }

    DEFINITIONS IMPLICIT TAGS ::=
    BEGIN

    -- EXPORTS All
    -- The types and values defined in this module are exported for
    -- use in the other ASN.1 modules.  Other applications may use
    -- them for their own purposes.

    SignatureType ::= SEQUENCE OF OBJECT IDENTIFIER

    id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
             us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 16 }

    id-sti  OBJECT IDENTIFIER ::= { id-smime 9 }   -- signature type
    identifier

    -- Signature Type Identifiers

    id-sti-originatorSig       OBJECT IDENTIFIER ::= { id-sti 1 }
    id-sti-domainSig           OBJECT IDENTIFIER ::= { id-sti 2 }
    id-sti-addAttribSig        OBJECT IDENTIFIER ::= { id-sti 3 }
    id-sti-reviewSig           OBJECT IDENTIFIER ::= { id-sti 4 }

    END -- of DOMSECSyntax















Dean & Ottaway                Experimental                     [Page 22]

RFC 3183         Domain Security Services using S/MIME      October 2001


8. References

   [1] Ramsdell, B., "S/MIME Version 3 Message Specification", RFC 2633,
       June 1999.

   [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

   [3] Hoffman, P., "Enhanced Security Services for S/MIME", RFC 2634,
       June 1999.

   [4] International Telecommunications Union, Recommendation X.208,
       "Open systems interconnection: specification of Abstract Syntax
       Notation (ASN.1)", CCITT Blue Book, 1989.

   [5] Housley, R., "Cryptographic Message Syntax", RFC 2630, June 1999.

9. Authors' Addresses

   Tim Dean
   QinetiQ
   St. Andrews Road
   Malvern
   Worcs
   WR14 3PS

   Phone: +44 (0) 1684 894239
   Fax:   +44 (0) 1684 896660
   EMail: tbdean@QinetiQ.com

   William Ottaway
   QinetiQ
   St. Andrews Road
   Malvern
   Worcs
   WR14 3PS

   Phone: +44 (0) 1684 894079
   Fax:   +44 (0) 1684 896660
   EMail: wjottaway@QinetiQ.com











Dean & Ottaway                Experimental                     [Page 23]

RFC 3183         Domain Security Services using S/MIME      October 2001


10.  Full Copyright Statement

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.



















Dean & Ottaway                Experimental                     [Page 24]