💾 Archived View for republic.circumlunar.space › users › johngodlee › posts › 2018-05-01-latlong-xy.… captured on 2023-04-19 at 23:53:50. Gemini links have been rewritten to link to archived content
⬅️ Previous capture (2021-12-04)
-=-=-=-=-=-=-
DATE: 2018-05-01
AUTHOR: John L. Godlee
I'm working on a large dataset of woodland plots with in the SEOSAW network[1]. As part of this work I want to compare the spatial distribution of tree stems within the plots. Some of the plots have their stem locations recorded as decimal latitude/longitude co-ordinates, presumably done with a handheld GPS, while other plots have their stems recorded as metre coordinates from the plot edges, presumably these plots were done with a set of tape measures.
I can't easily compare plots with these different methods and it's good to be consistent, so I set about writing a function in R that can take stem locations and plot corner loctions in latitude/longitude coordinates and convert them to rought X Y metre coordinates. The function can be found below, and also here[2]. This is what I came up with:
2: /files/latlong_xy/latlong_xy_function.R
# Function allowing lat long to x y coordinate conversion # John Godlee (johngodlee@gmail.com) # 2018_04_20 # Packages ---- library(dplyr) # Data manip. library(rgdal) # CRS stuff library(raster) # spLines() library(rgeos) # gDistance() # Function ---- # stem_id = a unique ID string for each stem # stem_lon, stem_lat = latitude longitude coordinates for each stem # corner_id = unique ID string for each plot corner # corner_lon, corner_lat = latitude longitude coordinates for each plot corner latlong_xy <- function(stem_id, stem_lon, stem_lat, corner_id, corner_lon, corner_lat){ long_2_utm <- function(x,y) { paste("UTM zone ", (floor((x + 180)/6) %% 60) + 1, ifelse(y < 0, "S", "N"), sep = "") } epsg <- make_EPSG() # Create list of EPSG dataset to search for CRS wgs84 <- epsg[grep("WGS 84", epsg$note, ignore.case=TRUE),] # Search for wgs84 wgs84[grep("longlat", wgs84$prj4, ignore.case=TRUE),] # grep proj4string to check wgs84_crs <- CRS(wgs84[grep("longlat", wgs84$prj4, ignore.case=TRUE),]$prj4[2]) # Store string as vector # Must change the UTM zone to match location of your plot. utm_id <- long_2_utm(mean(corner_lon), mean(corner_lat)) utm_zone_crs <- CRS(wgs84[grep(utm_id, wgs84$note, ignore.case=TRUE),]$prj4[1]) # grep for UTM zone and store # Convert stem data to utm stems_points <- SpatialPointsDataFrame(as.matrix(cbind(stem_lon, stem_lat)), # extract only long lat coords proj4string = wgs84_crs, data = data.frame(stem_id)) # Transform SPDF to utm stems_points_sp_utm <- spTransform(stems_points, utm_zone_crs) # Convert back to dataframe stems_points_df_utm <- as.data.frame(stems_points_sp_utm) # Give column names colnames(stems_points_df_utm) <- c("id", "x_utm", "y_utm") # Convert plot corners to utm ---- plot_corners_clean <- data.frame(corner_id, "x" = corner_lon, "y" = corner_lat) plot_corners_points <- SpatialPointsDataFrame(plot_corners_clean[,2:3], proj4string = wgs84_crs, data = data.frame(plot_corners_clean[,1])) # Transform SPDF to utm plot_corners_points_utm <- spTransform(plot_corners_points, utm_zone_crs) # Convert back to dataframe plot_corners_df_utm <- as.data.frame(plot_corners_points_utm) # Give column names colnames(plot_corners_df_utm) <- c("id", "x_coord", "y_coord") # Make spatial lines from corners ---- # Get corner locations corner_nw <- plot_corners_df_utm[1,] corner_ne <- plot_corners_df_utm[2,] corner_sw <- plot_corners_df_utm[4,] # Create x axis line x_line <- rbind(corner_nw, corner_ne) %>% dplyr::select(x_coord, y_coord) %>% as.matrix(.) %>% spLines(., crs = utm_zone_crs) # Create y axis line y_line <- rbind(corner_nw, corner_sw) %>% dplyr::select(x_coord, y_coord) %>% as.matrix(.) %>% spLines(., crs = utm_zone_crs) # Calculate x y distances from line to point for each stem and append to data frame ---- stems_points_df_utm$x_coord <- as.vector(gDistance(stems_points_sp_utm, y_line, byid = T)) stems_points_df_utm$y_coord <- as.vector(gDistance(stems_points_sp_utm, x_line, byid = T)) # Clean up old and unnecessary columns stems_loc_df <- stems_points_df_utm %>% dplyr::select("id", "x_coord", "y_coord") stems_loc_df }