💾 Archived View for gmi.noulin.net › rfc › rfc3204.gmi captured on 2022-04-29 at 00:04:48. Gemini links have been rewritten to link to archived content

View Raw

More Information

⬅️ Previous capture (2021-12-05)

➡️ Next capture (2023-01-29)

-=-=-=-=-=-=-

Updated by:

RFC3459

RFC5621

Keywords: [--------|p], multipart, internet, mail, extensions







Network Working Group                                        E. Zimmerer
Request for Comments: 3204                                  Rankom, Inc.
Category: Standards Track                                    J. Peterson
                                                           Neustar, Inc.
                                                               A. Vemuri
                                                    Qwest Communications
                                                                  L. Ong
                                                          Ciena Networks
                                                                F. Audet
                                                               M. Watson
                                                               M. Zonoun
                                                         Nortel Networks
                                                           December 2001


               MIME media types for ISUP and QSIG Objects

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

Abstract

   This document describes MIME types for application/ISUP and
   application/QSIG objects for use in SIP applications, according to
   the rules defined in RFC 2048.  These types can be used to identify
   ISUP and QSIG objects within a SIP message such as INVITE or INFO, as
   might be implemented when using SIP in an environment where part of
   the call involves interworking to the PSTN.

1. Introduction

   ISUP (ISDN User part) defined in the ITU-T recommendations Q.761-4 is
   a signaling protocol used between telephony switches.  There are
   configurations in which ISUP-encoded signaling information needs to
   be transported between SIP entities as part of the payload of SIP
   messages, where the preservation of ISUP data is necessary for the
   proper operation of PSTN features.





Zimmerer, et al.            Standards Track                     [Page 1]

RFC 3204               ISUP and QSIG MIME Objects          December 2001


   QSIG is the analogous signaling protocol used between private branch
   exchanges to support calls within private telephony networks.  There
   is a similar need to transport QSIG-encoded signaling information
   between SIP entities in some environments.

   This document is specific to this usage and would not apply to the
   transportation of ISUP or QSIG messages in other applications. These
   media types are intended for ISUP or QSIG application information
   that is used within the context of a SIP session, and not as general
   purpose transport of SCN signaling.

   The definition of media types for ISUP and QSIG application
   information does not address fully how the non-SIP and SIP entities
   exchanging messages determine or negotiate compatibility.  It is
   assumed that this is addressed by alternative means such as the
   configuration of the interworking functions.

   This is intended to be an IETF approved MIME type, and to be defined
   through an RFC.  NOTE: usage of Q.SIG within SIP is neither endorsed
   nor recommended as a result of this MIME registration.

3. Proposed new media types

   ISUP and QSIG messages are composed of arbitrary binary data that is
   transparent to SIP processing. The best way to encode these is to use
   binary encoding. This is in conformance with the restrictions imposed
   on the use of binary data for MIME (RFC 2045 [3]). It should be noted
   that the rules mentioned in the RFC 2045 apply to Internet mail
   messages and not to SIP  messages. Binary has been preferred over
   Base64 encoding because the latter would only result in adding bulk
   to the encoded messages and possibly be more costly in terms of
   processing power.

3.1 ISUP Media Type

   This media type is defined by the following information:

   Media type name: application
   Media subtype name: ISUP
   Required parameters: version
   Optional parameters: base
   Encoding scheme: binary
   Security considerations: See section 5.

   The ISUP message is encapsulated beginning with the Message Type Code
   (i.e., omitting Routing Label and Circuit ID Code).





Zimmerer, et al.            Standards Track                     [Page 2]

RFC 3204               ISUP and QSIG MIME Objects          December 2001


   The use of the 'version' parameter allows network administrators to
   identify specific versions of ISUP that will be exchanged on a
   bilateral basis. This enables a particular client such as a
   SoftSwitch/Media Gateway Controller to recognize and parse the
   message correctly,  or (possibly) to reject the message if the
   specified ISUP version is not supported. This specification places no
   constraints on the values that may be used in 'version'; these are
   left to the discretion of the network administrator.

   This 'version' could, for example, be used to identify a network-
   specific implementation of ISUP, e.g., X-NetxProprietaryISUPv3, or to
   identify a well-known standard version of ISUP, e.g., itu-t or ansi.

   A 'base' parameter can optionally be included in some cases (e.g., if
   the receiver may not recognize the 'version' string) to specify that
   the encapsulated ISUP can also be processed using the identified
   'base' specification.  Table 1 provides a list of 'base' values
   supported by the 'application/ISUP' media type, including whether or
   not the forward compatibility mechanism defined in ITU-T 1992 ISUP is
   supported.

                  Table 1: ISUP 'base' values

      base             protocol                 compatibility

      itu-t88          ITU-T Q.761-4 (1988)     no
      itu-t92+         ITU-T Q.761-4 (1992)     yes
      ansi88           ANSI T1.113-1988         no
      ansi00           ANSI T1.113-2000         yes
      etsi121          ETS 300 121              no
      etsi356          ES 300 356               yes
      gr317            BELLCORE GR-317          no
      ttc87            JT-Q761-4(1987-1992)     no
      ttc93+           JT-Q761-4(1993-)         yes

   The Content-Disposition header [5] may be included to describe how
   the encapsulated ISUP is to be processed, and in particular what the
   handling should be if the received Content-Type is not recognized.
   The default disposition-type for an ISUP message body is "signal".
   This type indicates that the body part contains signaling information
   associated with the session, but does not describe the session.

   Supplementing the description of the Content-Disposition header in
   [5], as well as any characterization of the Content-Disposition
   header in the SIP standard, is the following BNF describing
   disposition-types and disposition-params that may be used in the
   header of ISUP and QSIG MIME bodies.




Zimmerer, et al.            Standards Track                     [Page 3]

RFC 3204               ISUP and QSIG MIME Objects          December 2001


      Content-Disposition   =  "Content-Disposition" ":"
                           disposition-type *( ";" disposition-param )
      disposition-type      =  "signal" |  disp-extension-token
      disposition-param     =  "handling" "="
                           ( "optional" | "required" | other-handling )
                           |   generic-param
      other-handling        =  token
      disp-extension-token  =  token

   A full definition of the use of the "handling" parameter is given in
   the IANA Considerations section below.  The following is how a
   typical header would look ('base' may be omitted):

      Content-Type: application/ISUP; version=nxv3; base=etsi121
      Content-Disposition: signal; handling=optional

3.2 QSIG Media Type

   The application/QSIG media type is defined by the following
   information:

   Media type name: application
   Media subtype name: QSIG
   Required parameters: none
   Optional parameters: version
   Encoding scheme: binary
   Security considerations: See section 5.

   The use of the 'version' parameter allows identification of different
   QSIG variants. This enables the terminating Connection Server to
   recognize and parse the message correctly, or (possibly) to reject
   the message if the particular QSIG variant is not supported.

   Table 2 is a list of protocol versions supported by the
   'application/QSIG' media type.

           Table 2: QSIG versions

         version         protocol
         -------         --------
         iso             ISO/IEC 11572 (Basic Call) and
                         ISO/IEC 11582 (Generic Functional Protocol)









Zimmerer, et al.            Standards Track                     [Page 4]

RFC 3204               ISUP and QSIG MIME Objects          December 2001


   The following is how a typical header would look (Content-Disposition
   not included in this instance):

      Content-Type: application/QSIG; version=iso

   The default Content-Disposition disposition-type is "signal" as in an
   ISUP body part. The "handling" parameter described above can also be
   used for QSIG bodies.

4. Illustrative examples

4.1 ISUP

   SIP message format requires a Request line followed by Header lines
   followed by a CRLF separator followed by the message body. To
   illustrate the use of the 'application/ISUP' media type, below is an
   INVITE message which has the originating SDP information and an
   encapsulated ISUP IAM.

   Note that the two payloads are demarcated by the boundary parameter
   (specified in RFC 2046 [4]) which in the example has the value
   "unique-boundary-1". This is part of the specification of MIME
   multipart and is not related to the

         INVITE sip:13039263142@Den1.level3.com SIP/2.0
         Via: SIP/2.0/UDP den3.level3.com
         From: sip:13034513355@den3.level3.com
         To: sip:13039263142@Den1.level3.com
         Call-ID: DEN1231999021712095500999@Den1.level3.com
         CSeq: 8348 INVITE
         Contact: <sip:jpeterson@level3.com>
         Content-Length: 436
         Content-Type: multipart/mixed; boundary=unique-boundary-1
         MIME-Version: 1.0

         --unique-boundary-1
         Content-Type: application/SDP; charset=ISO-10646

         v=0
         o=jpeterson 2890844526 2890842807 IN IP4 126.16.64.4
         s=SDP seminar
         c=IN IP4 MG122.level3.com
         t= 2873397496  2873404696
         m=audio 9092 RTP/AVP 0 3 4
         --unique-boundary-1
         Content-Type: application/ISUP; version=nxv3;
         base=etsi121
         Content-Disposition: signal; handling=optional



Zimmerer, et al.            Standards Track                     [Page 5]

RFC 3204               ISUP and QSIG MIME Objects          December 2001


         01 00 49 00 00 03 02 00 07 04 10 00 33 63 21
         43 00 00 03 06 0d 03 80 90 a2 07 03 10 03 63
         53 00 10 0a 07 03 10 27 80 88 03 00 00 89 8b
         0e 95 1e 1e 1e 06 26 05 0d f5 01 06 10 04 00
         --unique-boundary-1--

   Note: Since binary encoding is used for the ISUP payload, each byte
   is encoded as a byte, and not as a  two-character hex representation.
   Hex digits were used in the document because a literal encoding of
   those bytes would have been confusing and unreadable.

4.2 QSIG

   To illustrate the use of the 'application/QSIG' media type, below is
   an INVITE message which has the originating SDP information and an
   encapsulated QSIG SETUP message.

   Note that the two payloads are demarcated by the boundary parameter
   (specified in RFC 2046 [4]) which in the example has the value
   "unique- boundary-1". This is part of the specification of MIME
   multipart and is not related to the 'application/QSIG' media type.

         INVITE sip:14084955072@sc1.nortelnetworks.com SIP/2.0
         Via: SIP/2.0/UDP sc10.nortelnetworks.com
         From: sip:14085655675@sc10.nortelnetworks.com
         To: sip:14084955072@sc1.nortelnetworks.com
         Call-ID: 1231999021712095500999@sc12.nortelnetworks.com
         CSeq: 1234 INVITE
         Contact: <sip:14085655675@sc10.nortelnetworks.com>
         Content-Length: 358
         Content-Type: multipart/mixed; boundary=unique-boundary-1
         MIME-Version: 1.0

         --unique-boundary-1
         Content-Type: application/SDP; charset=ISO-10646

         v=0
         o=audet 2890844526 2890842807 5 IN IP4 134.177.64.4
         s=SDP seminar
         c=IN IP4 MG141.nortelnetworks.com
         t= 2873397496 2873404696
         m=audio 9092 RTP/AVP 0 3 4









Zimmerer, et al.            Standards Track                     [Page 6]

RFC 3204               ISUP and QSIG MIME Objects          December 2001


         --unique-boundary-1
         Content-type:application/QSIG; version=iso

         08 02 55 55 05 04 02 90 90 18 03 a1 83 01
         70 0a 89 31 34 30 38 34 39 35 35 30 37 32
         --unique-boundary-1--

5. Security considerations

   Information contained in ISUP and QSIG bodies may include sensitive
   customer information, potentially requiring use of encryption.

   Security mechanisms are provided in RFC 2543 (SIP - Session
   Initiation Protocol) and should be used as appropriate for both the
   SIP message and the encapsulated ISUP or QSIG body.

6. IANA considerations

   This document registers the "application/ISUP" and "application/QSIG"
   MIME media types.

   Registrations for the 'version' symbols used within the ISUP and QSIG
   MIME types must specify a definitive specification reference,
   identifying a particular issue of the specification, to which the new
   symbol shall refer. Identifying a definite specification reference
   requires a review process; the authors recommend that a subject
   matter expert be designated as described in RFC 2434 [6] under Expert
   Review.

   Note that where a specification is fully peer-to-peer backwards
   compatible with a previous issue (i.e., the compatibility mechanism
   is supported by both), then there is no need for separate symbols to
   be registered. The symbol for the original specification should be
   used to identify backwards-compatible upgrades of that specification
   as well.

   Symbols beginning with the characters 'X-' are reserved for non-
   standard usage (e.g., cases in which a token other than a string
   representing an issue of an ISUP specification is appropriate for
   characterizing ISUP within an administrative domain). Such non-
   standard version can only be transmitted between administrative
   domains in accordance with a bilateral agreement. These symbols
   should be administered under the Private Use policy described in RFC
   2434.







Zimmerer, et al.            Standards Track                     [Page 7]

RFC 3204               ISUP and QSIG MIME Objects          December 2001


   This document registers a new disposition-type for the Content-
   Disposition header, 'signal', to be used when a MIME body contains
   supplemental signaling information (ISUP and QSIG as MIME bodies
   being examples of this).

   This document also defines a Content Disposition parameter,
   "handling".  The handling parameter, handling-parm, describes how the
   UAS should react if it receives a message body whose content type or
   disposition type it does not understand. If the parameter has the
   value "optional", the UAS MUST ignore the message body; if it has the
   value "required", the UAS MUST return 415 (Unsupported Media Type).
   If the handling parameter is missing, the value "required" is to be
   assumed.

7. Authors Addresses

   Eric Zimmerer
   Rankom Inc.
   19500 Pruneridge Ave Suite #4303
   Cupertino, CA 95014, USA
   EMail: eric_zimmerer@yahoo.com

   Aparna Vemuri
   Qwest Communications
   6000 Parkwood Pl
   Dublin, OH 43016, USA
   EMail: Aparna.Vemuri@Qwest.com

   Jon Peterson
   NeuStar, Inc
   1800 Sutter Street, Suite 570
   Concord, CA 94520, USA
   EMail: jon.peterson@neustar.com

   Lyndon Ong
   Ciena
   Cupertino, CA, USA
   EMail: lyndon_ong@yahoo.com

   Francois Audet
   Nortel Networks
   4301 Great America Parkway
   Santa Clara, CA 95054, USA
   EMail: mzonoun@nortelnetworks.com







Zimmerer, et al.            Standards Track                     [Page 8]

RFC 3204               ISUP and QSIG MIME Objects          December 2001


   Mo Zonoun
   Nortel Networks
   4301 Great America Parkway
   Santa Clara, CA 95054, USA
   EMail: audet@nortelnetworks.com

   M. Watson
   Nortel Networks
   Maidenhead, UK
   EMail: mwatson@nortelnetworks.com

8. References

   [1] Freed, N., Klensin, J. and J. Postel, "Multipart Internet Mail
       Extensions (MIME) Part Four: Registration Procedures", BCP 13,
       RFC 2048, November 1996.

   [2] Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg,
       "Session Initiation Protocol (SIP)", RFC 2543, March 1999.

   [3] Freed, N. and N. Borenstein, "Multipart Internet Mail Extensions
       (MIME) Part One: Format of Internet Message Bodies", RFC 2045,
       November 1996.

   [4] Freed, N. and N. Borenstein, "Multipart Internet Mail Extensions
       (MIME) Part Two: Media Types", RFC 2046, November 1996.

   [5] Troost, R., Dorner, S. and K. Moore, "Communicating Presentation
       Information in Internet Messages: The Content-Disposition Header
       Field", RFC 2183, August 1997.

   [6] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
       Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.


















Zimmerer, et al.            Standards Track                     [Page 9]

RFC 3204               ISUP and QSIG MIME Objects          December 2001


Full Copyright Statement

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.



















Zimmerer, et al.            Standards Track                    [Page 10]