πŸ’Ύ Archived View for gmi.noulin.net β€Ί man β€Ί man3 β€Ί y0f.3.gmi captured on 2023-09-08 at 17:13:32. Gemini links have been rewritten to link to archived content

View Raw

More Information

-=-=-=-=-=-=-

Y0(3)                                                                   Linux Programmer's Manual                                                                  Y0(3)

NAME
       y0, y0f, y0l, y1, y1f, y1l, yn, ynf, ynl - Bessel functions of the second kind

SYNOPSIS
       #include <math.h>

       double y0(double x);
       double y1(double x);
       double yn(int n, double x);

       float y0f(float x);
       float y1f(float x);
       float ynf(int n, float x);

       long double y0l(long double x);
       long double y1l(long double x);
       long double ynl(int n, long double x);

       Link with -lm.

   Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

       y0(), y1(), yn():
           _XOPEN_SOURCE
               || /* Since glibc 2.19: */ _DEFAULT_SOURCE
               || /* Glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

       y0f(), y0l(), y1f(), y1l(), ynf(), ynl():
           _XOPEN_SOURCE >= 600
               || (_ISOC99_SOURCE && _XOPEN_SOURCE)
               || /* Since glibc 2.19: */ _DEFAULT_SOURCE
               || /* Glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
       The  y0() and y1() functions return Bessel functions of x of the second kind of orders 0 and 1, respectively.  The yn() function returns the Bessel function of x
       of the second kind of order n.

       The value of x must be positive.

       The y0f(), y1f(), and ynf() functions are versions that take and return float values.  The y0l(), y1l(), and ynl() functions are versions that  take  and  return
       long double values.

RETURN VALUE
       On success, these functions return the appropriate Bessel value of the second kind for x.

       If x is a NaN, a NaN is returned.

       If x is negative, a domain error occurs, and the functions return -HUGE_VAL, -HUGE_VALF, or -HUGE_VALL, respectively.  (POSIX.1-2001 also allows a NaN return for
       this case.)

       If x is 0.0, a pole error occurs, and the functions return -HUGE_VAL, -HUGE_VALF, or -HUGE_VALL, respectively.

       If the result underflows, a range error occurs, and the functions return 0.0

       If the result overflows, a range error occurs, and the functions return -HUGE_VAL, -HUGE_VALF, or -HUGE_VALL, respectively.  (POSIX.1-2001 also allows a 0.0  re‐
       turn for this case.)

ERRORS
       See math_error(7) for information on how to determine whether an error has occurred when calling these functions.

       The following errors can occur:

       Domain error: x is negative
              errno is set to EDOM.  An invalid floating-point exception (FE_INVALID) is raised.

       Pole error: x is 0.0
              errno is set to ERANGE and an FE_DIVBYZERO exception is raised (but see BUGS).

       Range error: result underflow
              errno is set to ERANGE.  No FE_UNDERFLOW exception is returned by fetestexcept(3) for this case.

       Range error: result overflow
              errno is set to ERANGE (but see BUGS).  An overflow floating-point exception (FE_OVERFLOW) is raised.

ATTRIBUTES
       For an explanation of the terms used in this section, see attributes(7).

       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β”‚Interface                                                                                                                             β”‚ Attribute     β”‚ Value   β”‚
       β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
       β”‚y0(), y0f(), y0l()                                                                                                                    β”‚ Thread safety β”‚ MT-Safe β”‚
       β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
       β”‚y1(), y1f(), y1l()                                                                                                                    β”‚ Thread safety β”‚ MT-Safe β”‚
       β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
       β”‚yn(), ynf(), ynl()                                                                                                                    β”‚ Thread safety β”‚ MT-Safe β”‚
       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

CONFORMING TO
       The functions returning double conform to SVr4, 4.3BSD, POSIX.1-2001, POSIX.1-2008.  The others are nonstandard functions that also exist on the BSDs.

BUGS
       Before glibc 2.19, these functions misdiagnosed pole errors: errno was set to EDOM, instead of ERANGE and no FE_DIVBYZERO exception was raised.

       Before glibc 2.17, did not set errno for "range error: result underflow".

       In glibc version 2.3.2 and earlier, these functions do not raise an invalid floating-point exception (FE_INVALID) when a domain error occurs.

SEE ALSO
       j0(3)

                                                                               2021-03-22                                                                          Y0(3)