💾 Archived View for gmi.noulin.net › mobileNews › 4177.gmi captured on 2021-12-05 at 23:47:19. Gemini links have been rewritten to link to archived content

View Raw

More Information

⬅️ Previous capture (2021-12-03)

➡️ Next capture (2023-01-29)

-=-=-=-=-=-=-

Dark energy camera snaps first images ahead of survey

The most powerful sky-scanning camera yet built has begun its quest to pin down

the mysterious stuff that makes up nearly three-quarters of our Universe.

The Dark Energy Survey's 570-million-pixel camera will scan some 300 million

galaxies in the coming five years.

The goal is to discover the nature of dark energy, which is theorised to be

responsible for the ever-faster expansion of the Universe.

Its first image, taken 12 September, focussed on the Fornax galaxy cluster.

In time, along with its massive haul of individual galaxies, it will study

100,000 galaxy clusters - the largest stable structures we know of - and 4,000

supernovae, the bright dying throes of stars.

This enormous survey is a collaboration between US, UK, Brazilian, Spanish and

German astronomers.

The phone box-sized Dark Energy Camera or DECam is mounted on the 4m Victor M

Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile's

Atacama desert.

While it is not the highest-resolution camera - that honour goes to the

Pan-Starss instrument in Hawaii - its high resolution and extraordinary

sensitivity make it arguably the world's most powerful camera.

DECam is particularly sensitive to red and infrared light, to better study

cosmic objects as distant as eight billion light-years away.

What is redshift?

Diagram of Doppler shift

The term "redshift" arises from the fact that light from more distant objects

shows up on Earth more red than when it left its source

The colour shift comes about because of the Doppler effect, which acts to

"stretch" or "compress" waves from moving objects

It is at work in the sound of a moving siren: an approaching siren sounds

higher-pitched and a receding one sounds lower-pitched

In the case of light, approaching objects appear more blue and receding objects

appear more red

The expansion of the Universe is accelerating, so in general, more distant

objects are moving away from us (and each other, and everything else) more

quickly than nearer ones

At cosmic distances, this "cosmological redshift" can greatly affect the colour

- the factor by which the wavelength is "stretched" is called redshift

More distant objects are moving away from us - and each other - faster than

nearer objects, which causes a shift of their apparent colour toward the red

end of the spectrum - a "redshift". But the very stretching of space can cause

the same effect.

Careful studies of the shifted light from distant supernovae were what first

demonstrated this expansion of the Universe, leading to the 2011 Nobel prize in

physics.

What is believed to be causing this increase in the speed of expansion is

called dark energy, making up more than 70% of the mass-energy - all of the

"stuff" - of the Universe and the focus of the DECam's mission.

Other efforts hope to get to the bottom of the mystery, including the Boss

survey and a future space telescope dedicated to the effort called Euclid.

But for now, Will Percival from the University of Portsmouth, a Dark Energy

Survey collaborator, said DECam is an exciting prospect.

"This will be the largest galaxy survey of its kind, and the galaxy shapes and

positions will tell us a great deal about the nature of the physical process

that we call dark energy, but do not currently understand," he said.

The survey will tackle the problem in four ways.

It will study the same kind of supernovae that led to the Nobel prize, in a bid

to unravel the "expansion history" of the Universe - when its expansion

increased and decreased over billions of years.

It will also map out in 3D the distribution of galaxy clusters, measuring what

are known as baryon acoustic oscillations - literally relics of the sound

echoes of the Big Bang.

Dark energy and dark matter mysteries

Dark matter distribution simulation

Gravity acting across vast distances does not seem to explain what astronomers

see

Galaxies, for example, should fly apart; some other mass must be there holding

them together

Astrophysicists have thus postulated "dark matter" - invisible to us but

clearly acting on galactic scales

At the greatest distances, the Universe's expansion is accelerating

Thus we have also "dark energy" which acts to drive the expansion, in

opposition to gravity

The current theory holds that 73% of the Universe is dark energy, 23% is dark

matter, and just 4% the kind of matter we know well

By counting the clusters and plotting out when they evidently formed, the

survey can feed back to computer models that map out how we think the Universe

organised itself in its earliest years.

And studies of the way galaxies and galaxy clusters bend passing light - in a

process called weak gravitational lensing - will help to pin down the equally

mysterious "dark matter" that is believed to make up more than 80% of the

Universe's mass - most of the Universe's stuff that is not energy.

DECam will now be run through a series of tests and will begin the official

survey in December.

With each snapshot it acquires, it will see an apparent area of the sky 20

times larger than the full moon.

In its full five-year run, it should capture an eighth of the full sky.

"The achievement of first light through the Dark Energy Camera begins a

significant new era in our exploration of the cosmic frontier," said James

Siegrist, associate director of science for high-energy physics at the US

Department of Energy, which oversaw the instrument's construction.

"The results of this survey will bring us closer to understanding the mystery

of dark energy and what it means for the Universe."