💾 Archived View for gmi.noulin.net › mobileNews › 2603.gmi captured on 2021-12-05 at 23:47:19. Gemini links have been rewritten to link to archived content

View Raw

More Information

⬅️ Previous capture (2021-12-03)

➡️ Next capture (2023-01-29)

-=-=-=-=-=-=-

Svensk forskare har f ngat antimateria

Publicerad: 17 november 2010, 19.08. Senast ndrad: 17 november 2010, 22.08

2010-11-17 19:08:15

Varf r best r v r v rld endast av materia?

G tan kan vara p v g mot en l sning med hj lp av en forskare fr n Stockholms

universitet som har varit med och f r f rsta g ngen f ngat antimateria vid

CERN.

Det k nns fantastiskt, s ger docent Svante Jonsell.

Svante Jonsell och hans kollegor vid den internationella forskargruppen ALPHA

har f r f rsta g ngen lyckats f nga atomer av antimateria ett f rsta steg f r

att ta reda p varf r universum bara best r av materia.

Vad vi har gjort r att vi lyckats f nga alla fasta atomer av det man kallar

antimateria och h lla fast dem i en "atomf lla", s ger Svante Jonsell.

Antimateria r enklast beskrivet spegelbilder till vanliga partiklar men med

motsatt elektrisk laddning.

Under Big Bang skapades b de materia och antimateria enligt g ngse teorier i

fysiken. Men n r de tv tr ffar p varandra f rintas de de f rg r varandra.

Fr gan r d rf r hur den materia vi idag ser i universum blev ver.

Det finns ett problem h r. Skapades det mer materia n antimateria? Eller r

spegelbilden inte helt perfekt?

Om n gon liten skillnad kan hittas skulle det kunna f rklara vart all

antimateria tagit v gen.

Experimentet utf rs vid det europeiska forskningslaboratoriet CERN utanf r Gen

ve eftersom antipartiklarna m ste skapas i partikelacceleratorer.

H r tar man fram den enklaste formen av antiatomer, antiv te.

n s l nge har forskarna lyckats producera 38 atomer som nu h lls fast av

starka magnetiska krafter i vakuum. Det g r inte att f rvara dem i en vanlig

beh llare eftersom de genast f rg rs n r de kommer i kontakt med materia.

Atomerna f r inte heller r ra sig s mycket. D rf r r hela experimentet

nerkylt till nio kelvin med hj lp av flytande helium.

Ett 40-tal personer har arbetat med projektet i tta r. De r v ldigt glada

ver att ntligen ha lyckats.

F r oss r det h r fantastiskt. Vi har skapat atomer gjorda av partiklar som

inte finns p jorden, s ger Jonsell.

Nu satsar forskarna p att ka antalet atomer s att det g r att unders ka

ljuset fr n antiv te. Eventuellt kan man d se om det finns n got liten

skillnad j mf rt med vanligt v te. D blir det riktigt sp nnande, s ger Svante

Jonsell.

Om n gra r hoppas man ha n gra tusen atomer att jobba med.

Finns det n gra faror med experimentet? Vad h nder om ni tappar antimateria?

Nej, det finns inga faror. Tappar man materian s faller den ner och f rg rs

mot v ggarna p experimentet. Vi kan aldrig skapa s mycket antimateria att det

blir farligt. ven om vi lyckas riktigt bra och skapar en miljard atomer s kan

energin som frig rs inte ens v rma en tekopp mer n en hundradels grad.

S om man stoppar in fingret i experimentet h nder ingenting?

Nej. D r det v rre om man hamnar i v gen f r antiprotonacceleratorn, s ger

Svante Jonsell.

--- Mobile internet site for reading on mobile phones, smartphones, small

screens and slow internet connections. ---http://mpggalaxy.mine.bz/www/BB/

mobile_news/threads/index_last.html

Posted: 2010882@445.48

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

stranger

Antimatter atom trapped for first time, say scientists

By Jason Palmer Science and technology reporter, BBC News

Alpha detector (Niels Madsen) Flashes of light were detected as the antimatter

"annihilated" with matter

Antimatter atoms have been trapped for the first time, scientists say.

Researchers at Cern, home of the Large Hadron Collider, have held 38

antihydrogen atoms in place, each for a fraction of a second.

Antihydrogen has been produced before but it was instantly destroyed when it

encountered normal matter.

The team, reporting in Nature, says the ability to study such antimatter atoms

will allow previously impossible tests of fundamental tenets of physics.

The current "standard model" of physics holds that each particle - protons,

electrons, neutrons and a zoo of more exotic particles - has its mirror image

antiparticle.

The antiparticle of the electron, for example, is the positron, and is used in

an imaging technique of growing popularity known as positron emission

tomography.

However, one of the great mysteries in physics is why our world is made up

overwhelmingly of matter, rather than antimatter; the laws of physics make no

distinction between the two and equal amounts should have been created at the

Universe's birth.

Slowing anti-atoms

Producing antimatter particles like positrons and antiprotons has become

commonplace in the laboratory, but assembling the particles into antimatter

atoms is far more tricky.

That was first accomplished by two groups in 2002. But handling the

"antihydrogen" - bound atoms made up of an antiproton and a positron - is

trickier still because it must not come into contact with anything else.

While trapping of charged normal atoms can be done with electric or magnetic

fields, trapping antihydrogen atoms in this "hands-off" way requires a very

particular type of field.

"Atoms are neutral - they have no net charge - but they have a little magnetic

character," explained Jeff Hangst of Aarhus University in Denmark, one of the

collaborators on the Alpha antihydrogen trapping project.

Start Quote

I'm delighted that it worked as we said it should... it shows that the dream

from many years ago is not completely crazy

End Quote Professor Gerald Gabrielse Harvard University

"You can think of them as small compass needles, so they can be deflected using

magnetic fields. We build a strong 'magnetic bottle' around where we produce

the antihydrogen and, if they're not moving too quickly, they are trapped," he

told BBC News.

Such sculpted magnetic fields that make up the magnetic bottle are not

particularly strong, so the trick was to make antihydrogen atoms that didn't

have much energy - that is, they were slow-moving.

The team proved that among their 10 million antiprotons and 700 million

positrons, 38 stable atoms of antihydrogen were formed, lasting about two

tenths of a second each.

Early days

Next, the task is to produce more of the atoms, lasting longer in the trap, in

order to study them more closely.

"What we'd like to do is see if there's some difference that we don't

understand yet between matter and antimatter," Professor Hangst said.

"That difference may be more fundamental; that may have to do with very

high-energy things that happened at the beginning of the universe.

"That's why holding on to them is so important - we need time to study them."

Gerald Gabrielse of Harvard University led one of the groups that in 2002 first

produced antihydrogen, and first proposed that the "magnetic bottle" approach

was the way to trap the atoms.

"I'm delighted that it worked as we said it should," Professor Gabrielse told

BBC News.

"We have a long way to go yet; these are atoms that don't live long enough to

do anything with them. So we need a lot more atoms and a lot longer times

before it's really useful - but one has to crawl before you sprint.

Professor Gabrielse's group is taking a different tack to prepare more of the

antihydrogen atoms, but said that progress in the field is "exciting".

"It shows that the dream from many years ago is not completely crazy."