💾 Archived View for gemlog.blue › users › cariboudatascience › 1613617805.gmi captured on 2021-12-04 at 18:04:22. Gemini links have been rewritten to link to archived content
-=-=-=-=-=-=-
library(ggplot2) library(scales) library(dplyr) library(tidyr) ## Import Fruit Consumption data rm(list=ls()) fruit <- read.csv("./DATA/1-fruit-consumption-per-capita.csv") fruit <- fruit %>%select(-Code) colnames(fruit) <- c("Country","Year","Fruits") fruits_top <- fruit %>% filter(Year =="2017") %>% top_n(5,Fruits) fruits_top <- as.data.frame(fruits_top) ggplot(fruits_top) + geom_col(aes(x=reorder(Country,Fruits),y=Fruits)) + coord_flip() + labs(title="Top 5 countries by per Capita Fruit Production") countries_five <- fruits_top %>% select(Country) %>% left_join(fruit,by="Country") head(countries_five) tail(countries_five) ### Plot Top % Countries by Kg cosummed per year per person. ggplot(countries_five) + geom_line(aes(x=Year,y=Fruits,col=Country)) + labs(title = "Fruit Consumption Kg/Person/Year",subtitle = "( Top 5 countries)", y="Fruit Consumed per person Kg") ### Plot of US Fruit consumption fruit %>% filter(Country =="United States") %>% ggplot() + geom_line(aes(x=Year,y=Fruits)) + labs(title="US Fruit Consumption: Kg/Year/Person (1960-2017)", y="Kilograms Per Person")