Network Working Group M. Rose Request For Comments: 3080 Invisible Worlds, Inc. Category: Standards Track March 2001 The Blocks Extensible Exchange Protocol Core Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2001). All Rights Reserved. Abstract This memo describes a generic application protocol kernel for connection-oriented, asynchronous interactions called the BEEP (Blocks Extensible Exchange Protocol) core. BEEP permits simultaneous and independent exchanges within the context of a single application user-identity, supporting both textual and binary messages. Rose Standards Track [Page 1] RFC 3080 The BEEP Core March 2001 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 4 2. The BEEP Core . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Exchange Styles . . . . . . . . . . . . . . . . . . . . . 6 2.2 Messages and Frames . . . . . . . . . . . . . . . . . . . 7 2.2.1 Frame Syntax . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1.1 Frame Header . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1.2 Frame Payload . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1.3 Frame Trailer . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Frame Semantics . . . . . . . . . . . . . . . . . . . . . 14 2.2.2.1 Poorly-formed Messages . . . . . . . . . . . . . . . . . . 14 2.3 Channel Management . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Message Semantics . . . . . . . . . . . . . . . . . . . . 16 2.3.1.1 The Greeting Message . . . . . . . . . . . . . . . . . . . 16 2.3.1.2 The Start Message . . . . . . . . . . . . . . . . . . . . 17 2.3.1.3 The Close Message . . . . . . . . . . . . . . . . . . . . 20 2.3.1.4 The OK Message . . . . . . . . . . . . . . . . . . . . . . 23 2.3.1.5 The Error Message . . . . . . . . . . . . . . . . . . . . 23 2.4 Session Establishment and Release . . . . . . . . . . . . 25 2.5 Transport Mappings . . . . . . . . . . . . . . . . . . . . 27 2.5.1 Session Management . . . . . . . . . . . . . . . . . . . . 27 2.5.2 Message Exchange . . . . . . . . . . . . . . . . . . . . . 27 2.6 Asynchrony . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6.1 Within a Single Channel . . . . . . . . . . . . . . . . . 28 2.6.2 Between Different Channels . . . . . . . . . . . . . . . . 28 2.6.3 Pre-emptive Replies . . . . . . . . . . . . . . . . . . . 29 2.6.4 Interference . . . . . . . . . . . . . . . . . . . . . . . 29 2.7 Peer-to-Peer Behavior . . . . . . . . . . . . . . . . . . 30 3. Transport Security . . . . . . . . . . . . . . . . . . . . 31 3.1 The TLS Transport Security Profile . . . . . . . . . . . . 34 3.1.1 Profile Identification and Initialization . . . . . . . . 34 3.1.2 Message Syntax . . . . . . . . . . . . . . . . . . . . . . 35 3.1.3 Message Semantics . . . . . . . . . . . . . . . . . . . . 36 3.1.3.1 The Ready Message . . . . . . . . . . . . . . . . . . . . 36 3.1.3.2 The Proceed Message . . . . . . . . . . . . . . . . . . . 36 4. User Authentication . . . . . . . . . . . . . . . . . . . 37 4.1 The SASL Family of Profiles . . . . . . . . . . . . . . . 38 4.1.1 Profile Identification and Initialization . . . . . . . . 39 4.1.2 Message Syntax . . . . . . . . . . . . . . . . . . . . . . 42 4.1.3 Message Semantics . . . . . . . . . . . . . . . . . . . . 43 5. Registration Templates . . . . . . . . . . . . . . . . . . 44 5.1 Profile Registration Template . . . . . . . . . . . . . . 44 5.2 Feature Registration Template . . . . . . . . . . . . . . 44 6. Initial Registrations . . . . . . . . . . . . . . . . . . 45 6.1 Registration: BEEP Channel Management . . . . . . . . . . 45 6.2 Registration: TLS Transport Security Profile . . . . . . . 45 Rose Standards Track [Page 2] RFC 3080 The BEEP Core March 2001 6.3 Registration: SASL Family of Profiles . . . . . . . . . . 46 6.4 Registration: application/beep+xml . . . . . . . . . . . . 47 7. DTDs . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.1 BEEP Channel Management DTD . . . . . . . . . . . . . . . 48 7.2 TLS Transport Security Profile DTD . . . . . . . . . . . . 50 7.3 SASL Family of Profiles DTD . . . . . . . . . . . . . . . 51 8. Reply Codes . . . . . . . . . . . . . . . . . . . . . . . 52 9. Security Considerations . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . 54 Author's Address . . . . . . . . . . . . . . . . . . . . . 55 A. Acknowledgements . . . . . . . . . . . . . . . . . . . . . 56 B. IANA Considerations . . . . . . . . . . . . . . . . . . . 57 Full Copyright Statement . . . . . . . . . . . . . . . . . 58 Rose Standards Track [Page 3] RFC 3080 The BEEP Core March 2001 1. Introduction This memo describes a generic application protocol kernel for connection-oriented, asynchronous interactions called BEEP. At BEEP's core is a framing mechanism that permits simultaneous and independent exchanges of messages between peers. Messages are arbitrary MIME [1] content, but are usually textual (structured using XML [2]). All exchanges occur in the context of a channel -- a binding to a well-defined aspect of the application, such as transport security, user authentication, or data exchange. Each channel has an associated "profile" that defines the syntax and semantics of the messages exchanged. Implicit in the operation of BEEP is the notion of channel management. In addition to defining BEEP's channel management profile, this document defines: o the TLS [3] transport security profile; and, o the SASL [4] family of profiles. Other profiles, such as those used for data exchange, are defined by an application protocol designer. Rose Standards Track [Page 4] RFC 3080 The BEEP Core March 2001 2. The BEEP Core A BEEP session is mapped onto an underlying transport service. A separate series of documents describe how a particular transport service realizes a BEEP session. For example, [5] describes how a BEEP session is mapped onto a single TCP [6] connection. When a session is established, each BEEP peer advertises the profiles it supports. Later on, during the creation of a channel, the client supplies one or more proposed profiles for that channel. If the server creates the channel, it selects one of the profiles and sends it in a reply; otherwise, it may indicate that none of the profiles are acceptable, and decline creation of the channel. Channel usage falls into one of two categories: initial tuning: these are used by profiles that perform initialization once the BEEP session is established (e.g., negotiating the use of transport security); although several exchanges may be required to perform the initialization, these channels become inactive early in the BEEP session and remain so for the duration. continuous: these are used by profiles that support data exchange; typically, these channels are created after the initial tuning channels have gone quiet. Note that because of their special nature, only one tuning channel may be established at any given time; in contrast, BEEP allows multiple data exchange channels to be simultaneously in use. Rose Standards Track [Page 5] RFC 3080 The BEEP Core March 2001 2.1 Roles Although BEEP is peer-to-peer, it is convenient to label each peer in the context of the role it is performing at a given time: o When a BEEP session is established, the peer that awaits new connections is acting in the listening role, and the other peer, which establishes a connection to the listener, is acting in the initiating role. In the examples which follow, these are referred to as "L:" and "I:", respectively. o A BEEP peer starting an exchange is termed the client; similarly, the other BEEP peer is termed the server. In the examples which follow, these are referred to as "C:" and "S:", respectively. Typically, a BEEP peer acting in the server role is also acting in a listening role. However, because BEEP is peer-to-peer in nature, no such requirement exists. 2.1.1 Exchange Styles BEEP allows three styles of exchange: MSG/RPY: the client sends a "MSG" message asking the server to perform some task, the server performs the task and replies with a "RPY" message (termed a positive reply). MSG/ERR: the client sends a "MSG" message, the server does not perform any task and replies with an "ERR" message (termed a negative reply). MSG/ANS: the client sends a "MSG" message, the server, during the course of performing some task, replies with zero or more "ANS" messages, and, upon completion of the task, sends a "NUL" message, which signifies the end of the reply. The first two styles are termed one-to-one exchanges, whilst the third style is termed a one-to-many exchange. Rose Standards Track [Page 6] RFC 3080 The BEEP Core March 2001 2.2 Messages and Frames A message is structured according to the rules of MIME. Accordingly, each message may begin with "entity-headers" (c.f., MIME's Section 3 [1]). If none, or only some, of the "entity-headers" are present: o the default "Content-Type" is "application/octet-stream"; and, o the default "Content-Transfer-Encoding" is "binary". Normally, a message is sent in a single frame. However, it may be convenient or necessary to segment a message into multiple frames (e.g., if only part of a message is ready to be sent). Each frame consists of a header, the payload, and a trailer. The header and trailer are each represented using printable ASCII characters and are terminated with a CRLF pair. Between the header and the trailer is the payload, consisting of zero or more octets. For example, here is a message contained in a single frame that contains a payload of 120 octets spread over 5 lines (each line is terminated with a CRLF pair): C: MSG 0 1 . 52 120 C: Content-Type: application/beep+xml C: C: C: C: C: END In this example, note that the entire message is represented in a single frame. Rose Standards Track [Page 7] RFC 3080 The BEEP Core March 2001 2.2.1 Frame Syntax The ABNF [7] for a frame is: frame = data / mapping data = header payload trailer header = msg / rpy / err / ans / nul msg = "MSG" SP common CR LF rpy = "RPY" SP common CR LF ans = "ANS" SP common SP ansno CR LF err = "ERR" SP common CR LF nul = "NUL" SP common CR LF common = channel SP msgno SP more SP seqno SP size channel = 0..2147483647 msgno = 0..2147483647 more = "." / "*" seqno = 0..4294967295 size = 0..2147483647 ansno = 0..2147483647 payload = *OCTET trailer = "END" CR LF mapping = ;; each transport mapping may define additional frames Rose Standards Track [Page 8] RFC 3080 The BEEP Core March 2001 2.2.1.1 Frame Header The frame header consists of a three-character keyword (one of: "MSG", "RPY", "ERR", "ANS", or "NUL"), followed by zero or more parameters. A single space character (decimal code 32, " ") separates each component. The header is terminated with a CRLF pair. The channel number ("channel") must be a non-negative integer (in the range 0..2147483647). The message number ("msgno") must be a non-negative integer (in the range 0..2147483647) and have a different value than all other "MSG" messages on the same channel for which a reply has not been completely received. The continuation indicator ("more", one of: decimal code 42, "*", or decimal code 46, ".") specifies whether this is the final frame of the message: intermediate ("*"): at least one other frame follows for the message; or, complete ("."): this frame completes the message. The sequence number ("seqno") must be a non-negative integer (in the range 0..4294967295) and specifies the sequence number of the first octet in the payload, for the associated channel (c.f., Section 2.2.1.2). The payload size ("size") must be a non-negative integer (in the range 0..2147483647) and specifies the exact number of octets in the payload. (This does not include either the header or trailer.) Note that a frame may have an empty payload, e.g., S: RPY 0 1 * 287 20 S: ... S: ... S: END S: RPY 0 1 . 307 0 S: END The answer number ("ansno") must be a non-negative integer (in the range 0..4294967295) and must have a different value than all other answers in progress for the message being replied to. Rose Standards Track [Page 9] RFC 3080 The BEEP Core March 2001 There are two kinds of frames: data and mapping. Each transport mapping (c.f., Section 2.5) may define its own frames. For example, [5] defines the SEQ frame. The remainder of this section discusses data frames. When a message is segmented and sent as several frames, those frames must be sent sequentially, without any intervening frames from other messages on the same channel. However, there are two exceptions: first, no restriction is made with respect to the interleaving of frames for other channels; and, second, in a one-to-many exchange, multiple answers may be simultaneously in progress. Accordingly, frames for "ANS" messages may be interleaved on the same channel -- the answer number is used for collation, e.g., S: ANS 1 0 * 0 20 0 S: ... S: ... S: END S: ANS 1 0 * 20 20 1 S: ... S: ... S: END S: ANS 1 0 . 40 10 0 S: ... S: END which shows two "ANS" messages interleaved on channel 1 as part of a reply to message number 0. Note that the sequence number is advanced for each frame sent on the channel, and is independent of the messages sent in those frames. Rose Standards Track [Page 10] RFC 3080 The BEEP Core March 2001 There are several rules for identifying poorly-formed frames: o if the header doesn't start with "MSG", "RPY", "ERR", "ANS", or "NUL"; o if any of the parameters in the header cannot be determined or are invalid (i.e., syntactically incorrect); o if the value of the channel number doesn't refer to an existing channel; o if the header starts with "MSG", and the message number refers to a "MSG" message that has been completely received but for which a reply has not been completely sent; o if the header doesn't start with "MSG", and refers to a message number for which a reply has already been completely received; o if the header doesn't start with "MSG", and refers to a message number that has never been sent (except during session establishment, c.f., Section 2.3.1.1); o if the header starts with "MSG", "RPY", "ERR", or "ANS", and refers to a message number for which at least one other frame has been received, and the three-character keyword starting this frame and the immediately-previous received frame for this message number are not identical; o if the header starts with "NUL", and refers to a message number for which at least one other frame has been received, and the keyword of of the immediately-previous received frame for this reply isn't "ANS"; o if the continuation indicator of the previous frame received on the same channel was intermediate ("*"), and its message number isn't identical to this frame's message number; o if the value of the sequence number doesn't correspond to the expected value for the associated channel (c.f., Section 2.2.1.2); or, o if the header starts with "NUL", and the continuation indicator is intermediate ("*") or the payload size is non-zero. If a frame is poorly-formed, then the session is terminated without generating a response, and it is recommended that a diagnostic entry be logged. Rose Standards Track [Page 11] RFC 3080 The BEEP Core March 2001 2.2.1.2 Frame Payload The frame payload consists of zero or more octets. Every payload octet sent in each direction on a channel has an associated sequence number. Numbering of payload octets within a frame is such that the first payload octet is the lowest numbered, and the following payload octets are numbered consecutively. (When a channel is created, the sequence number associated with the first payload octet of the first frame is 0.) The actual sequence number space is finite, though very large, ranging from 0..4294967295 (2**32 - 1). Since the space is finite, all arithmetic dealing with sequence numbers is performed modulo 2**32. This unsigned arithmetic preserves the relationship of sequence numbers as they cycle from 2**32 - 1 to 0 again. Consult Sections 2 through 5 of [8] for a discussion of the arithmetic properties of sequence numbers. When receiving a frame, the sum of its sequence number and payload size, modulo 4294967296 (2**32), gives the expected sequence number associated with the first payload octet of the next frame received. Accordingly, when receiving a frame if the sequence number isn't the expected value for this channel, then the BEEP peers have lost synchronization, then the session is terminated without generating a response, and it is recommended that a diagnostic entry be logged. Rose Standards Track [Page 12] RFC 3080 The BEEP Core March 2001 2.2.1.3 Frame Trailer The frame trailer consists of "END" followed by a CRLF pair. When receiving a frame, if the characters immediately following the payload don't correspond to a trailer, then the session is terminated without generating a response, and it is recommended that a diagnostic entry be logged. Rose Standards Track [Page 13] RFC 3080 The BEEP Core March 2001 2.2.2 Frame Semantics The semantics of each message is channel-specific. Accordingly, the profile associated with a channel must define: o the initialization messages, if any, exchanged during channel creation; o the messages that may be exchanged in the payload of the channel; and, o the semantics of these messages. A profile registration template (Section 5.1) organizes this information. 2.2.2.1 Poorly-formed Messages When defining the behavior of the profile, the template must specify how poorly-formed "MSG" messages are replied to. For example, the channel management profile sends a negative reply containing an error message (c.f., Section 2.3.1.5). If a poorly-formed reply is received on channel zero, the session is terminated without generating a response, and it is recommended that a diagnostic entry be logged. If a poorly-formed reply is received on another channel, then the channel must be closed using the procedure in Section 2.3.1.3. Rose Standards Track [Page 14] RFC 3080 The BEEP Core March 2001 2.3 Channel Management When a BEEP session starts, only channel number zero is defined, which is used for channel management. Section 6.1 contains the profile registration for BEEP channel management. Channel management allows each BEEP peer to advertise the profiles that it supports (c.f., Section 2.3.1.1), bind an instance of one of those profiles to a channel (c.f., Section 2.3.1.2), and then later close any channels or release the BEEP session (c.f., Section 2.3.1.3). A BEEP peer should support at least 257 concurrent channels. Rose Standards Track [Page 15] RFC 3080 The BEEP Core March 2001 2.3.1 Message Semantics 2.3.1.1 The Greeting Message When a BEEP session is established, each BEEP peer signifies its availability by immediately sending a positive reply with a message number of zero that contains a "greeting" element, e.g., L: I: L: RPY 0 0 . 0 110 L: Content-Type: application/beep+xml L: L: L: L: L: END I: RPY 0 0 . 0 52 I: Content-Type: application/beep+xml I: I: I: END Note that this example implies that the BEEP peer in the initiating role waits until the BEEP peer in the listening role sends its greeting -- this is an artifact of the presentation; in fact, both BEEP peers send their replies independently. The "greeting" element has two optional attributes ("features" and "localize") and zero or more "profile" elements, one for each profile supported by the BEEP peer acting in a server role: o the "features" attribute, if present, contains one or more feature tokens, each indicating an optional feature of the channel management profile supported by the BEEP peer; o the "localize" attribute, if present, contains one or more language tokens (defined in [9]), each identifying a desirable language tag to be used by the remote BEEP peer when generating textual diagnostics for the "close" and "error" elements (the tokens are ordered from most to least desirable); and, o each "profile" element contained within the "greeting" element identifies a profile, and unlike the "profile" elements that occur within the "start" element, the content of each "profile" element may not contain an optional initialization message. Section 5.2 defines a registration template for optional features. Rose Standards Track [Page 16] RFC 3080 The BEEP Core March 2001 2.3.1.2 The Start Message When a BEEP peer wants to create a channel, it sends a "start" element on channel zero, e.g., C: MSG 0 1 . 52 120 C: Content-Type: application/beep+xml C: C: C: C: C: END The "start" element has a "number" attribute, an optional "serverName" attribute, and one or more "profile" elements: o the "number" attribute indicates the channel number (in the range 1..2147483647) used to identify the channel in future messages; o the "serverName" attribute, an arbitrary string, indicates the desired server name for this BEEP session; and, o each "profile" element contained with the "start" element has a "uri" attribute, an optional "encoding" attribute, and arbitrary character data as content: * the "uri" attribute authoritatively identifies the profile; * the "encoding" attribute, if present, specifies whether the content of the "profile" element is represented as a base64- encoded string; and, * the content of the "profile" element, if present, must be no longer than 4K octets in length and specifies an initialization message given to the channel as soon as it is created. To avoid conflict in assigning channel numbers when requesting the creation of a channel, BEEP peers acting in the initiating role use only positive integers that are odd-numbered; similarly, BEEP peers acting in the listening role use only positive integers that are even-numbered. The "serverName" attribute for the first successful "start" element received by a BEEP peer is meaningful for the duration of the BEEP session. If present, the BEEP peer decides whether to operate as the indicated "serverName"; if not, an "error" element is sent in a negative reply. Rose Standards Track [Page 17] RFC 3080 The BEEP Core March 2001 When a BEEP peer receives a "start" element on channel zero, it examines each of the proposed profiles, and decides whether to use one of them to create the channel. If so, the appropriate "profile" element is sent in a positive reply; otherwise, an "error" element is sent in a negative reply. When creating the channel, the value of the "serverName" attribute from the first successful "start" element is consulted to provide configuration information, e.g., the desired server-side certificate when starting the TLS transport security profile (Section 3.1). For example, a successful channel creation might look like this: C: MSG 0 1 . 52 178 C: Content-Type: application/beep+xml C: C: C: C: C: C: END S: RPY 0 1 . 221 87 S: Content-Type: application/beep+xml S: S: S: END Similarly, an unsuccessful channel creation might look like this: C: MSG 0 1 . 52 120 C: Content-Type: application/beep+xml C: C: C: C: C: END S: ERR 0 1 . 221 127 S: Content-Type: application/beep+xml S: S: number attribute S: in <start> element must be odd-valued S: END Rose Standards Track [Page 18] RFC 3080 The BEEP Core March 2001 Finally, here's an example in which an initialization element is exchanged during channel creation: C: MSG 0 1 . 52 158 C: Content-Type: application/beep+xml C: C: C: C: ]]> C: C: C: END S: RPY 0 1 . 110 121 S: Content-Type: application/beep+xml S: S: S: ]]> S: S: END Rose Standards Track [Page 19] RFC 3080 The BEEP Core March 2001 2.3.1.3 The Close Message When a BEEP peer wants to close a channel, it sends a "close" element on channel zero, e.g., C: MSG 0 2 . 235 71 C: Content-Type: application/beep+xml C: C: C: END The "close" element has a "number" attribute, a "code" attribute, an optional "xml:lang" attribute, and an optional textual diagnostic as its content: o the "number" attribute indicates the channel number; o the "code" attribute is a three-digit reply code meaningful to programs (c.f., Section 8); o the "xml:lang" attribute identifies the language that the element's content is written in (the value is suggested, but not mandated, by the "localize" attribute of the "greeting" element sent by the remote BEEP peer); and, o the textual diagnostic (which may be multiline) is meaningful to implementers, perhaps administrators, and possibly even users, but never programs. Note that if the textual diagnostic is present, then the "xml:lang" attribute is absent only if the language indicated as the remote BEEP peer's first choice is used. If the value of the "number" attribute is zero, then the BEEP peer wants to release the BEEP session (c.f., Section 2.4) -- otherwise the value of the "number" attribute refers to an existing channel, and the remainder of this section applies. A BEEP peer may send a "close" message for a channel whenever all "MSG" messages it has sent on that channel have been acknowledged. (Acknowledgement consists of the first frame of a reply being received by the BEEP peer that sent the MSG "message".) After sending the "close" message, that BEEP peer must not send any more "MSG" messages on that channel being closed until the reply to the "close" message has been received (either by an "error" message rejecting the request to close the channel, or by an "ok" message subsequently followed by the channel being successfully started). Rose Standards Track [Page 20] RFC 3080 The BEEP Core March 2001 NOTE WELL: until a positive reply to the request to close the channel is received, the BEEP peer must be prepared to process any "MSG" messages that it receives on that channel. When a BEEP peer receives a "close" message for a channel, it may, at any time, reject the request to close the channel by sending an "error" message in a negative reply. Otherwise, before accepting the request to close the channel, and sending an "ok" message in a positive reply, it must: o finish sending any queued "MSG" messages on that channel of its own; o await complete replies to any outstanding "MSG" messages it has sent on that channel; and, o finish sending complete replies to any outstanding "MSG" messages it has received on that channel, and ensure that the final frames of those replies have been successfully delivered, i.e., * for transport mappings that guarantee inter-channel ordering of messages, the replies must be sent prior to sending the "ok" message in a positive reply; otherwise, * the replies must be sent and subsequently acknowledged by the underlying transport service prior to sending the "ok" message in a positive reply. Rose Standards Track [Page 21] RFC 3080 The BEEP Core March 2001 Briefly, a successful channel close might look like this: C: MSG 0 2 . 235 71 C: Content-Type: application/beep+xml C: C: C: END S: RPY 0 2 . 392 46 S: Content-Type: application/beep+xml S: S: S: END Similarly, an unsuccessful channel close might look like this: C: MSG 0 2 . 235 71 C: Content-Type: application/beep+xml C: C: C: END S: ERR 0 2 . 392 79 S: Content-Type: application/beep+xml S: S: still working S: END Rose Standards Track [Page 22] RFC 3080 The BEEP Core March 2001 2.3.1.4 The OK Message When a BEEP peer agrees to close a channel (or release the BEEP session), it sends an "ok" element in a positive reply. The "ok" element has no attributes and no content. 2.3.1.5 The Error Message When a BEEP peer declines the creation of a channel, it sends an "error" element in a negative reply, e.g., I: MSG 0 1 . 52 115 I: Content-Type: application/beep+xml I: I: I: I: I: END L: ERR 0 1 . 221 105 L: Content-Type: application/beep+xml L: L: all requested profiles are L: unsupported L: END The "error" element has a "code" attribute, an optional "xml:lang" attribute, and an optional textual diagnostic as its content: o the "code" attribute is a three-digit reply code meaningful to programs (c.f., Section 8); o the "xml:lang" attribute identifies the language that the element's content is written in (the value is suggested, but not mandated, by the "localize" attribute of the "greeting" element sent by the remote BEEP peer); and, o the textual diagnostic (which may be multiline) is meaningful to implementers, perhaps administrators, and possibly even users, but never programs. Note that if the textual diagnostic is present, then the "xml:lang" attribute is absent only if the language indicated as the remote BEEP peer's first choice is used. Rose Standards Track [Page 23] RFC 3080 The BEEP Core March 2001 In addition, a BEEP peer sends an "error" element whenever: o it receives a "MSG" message containing a poorly-formed or unexpected element; o it receives a "MSG" message asking to close a channel (or release the BEEP session) and it declines to do so; or o a BEEP session is established, the BEEP peer is acting in the listening role, and that BEEP peer is unavailable (in this case, the BEEP acting in the listening role does not send a "greeting" element). In the final case, both BEEP peers terminate the session, and it is recommended that a diagnostic entry be logged by both BEEP peers. Rose Standards Track [Page 24] RFC 3080 The BEEP Core March 2001 2.4 Session Establishment and Release When a BEEP session is established, each BEEP peer signifies its availability by immediately sending a positive reply with a message number of zero on channel zero that contains a "greeting" element, e.g., L: I: L: RPY 0 0 . 0 110 L: Content-Type: application/beep+xml L: L: L: L: L: END I: RPY 0 0 . 0 52 I: Content-Type: application/beep+xml I: I: I: END Alternatively, if the BEEP peer acting in the listening role is unavailable, it sends a negative reply, e.g., L: I: L: ERR 0 0 . 0 60 L: Content-Type: application/beep+xml L: L: L: END I: RPY 0 0 . 0 52 I: Content-Type: application/beep+xml I: I: I: END I: L: L: and the "greeting" element sent by the BEEP peer acting in the initiating role is ignored. It is recommended that a diagnostic entry be logged by both BEEP peers. Rose Standards Track [Page 25] RFC 3080 The BEEP Core March 2001 Note that both of these examples imply that the BEEP peer in the initiating role waits until the BEEP peer in the listening role sends its greeting -- this is an artifact of the presentation; in fact, both BEEP peers send their replies independently. When a BEEP peer wants to release the BEEP session, it sends a "close" element with a zero-valued "number" attribute on channel zero. The other BEEP peer indicates its willingness by sending an "ok" element in a positive reply, e.g., C: MSG 0 1 . 52 60 C: Content-Type: application/beep+xml C: C: C: END S: RPY 0 1 . 264 46 S: Content-Type: application/beep+xml S: S: S: END I: L: L: Alternatively, if the other BEEP doesn't want to release the BEEP session, the exchange might look like this: C: MSG 0 1 . 52 60 C: Content-Type: application/beep+xml C: C: C: END S: ERR 0 1 . 264 79 S: Content-Type: application/beep+xml S: S: still working S: END If session release is declined, the BEEP session should not be terminated, if possible. Rose Standards Track [Page 26] RFC 3080 The BEEP Core March 2001 2.5 Transport Mappings All transport interactions occur in the context of a session -- a mapping onto a particular transport service. Accordingly, this memo defines the requirements that must be satisfied by any document describing how a particular transport service realizes a BEEP session. 2.5.1 Session Management A BEEP session is connection-oriented. A mapping document must define: o how a BEEP session is established; o how a BEEP peer is identified as acting in the listening role; o how a BEEP peer is identified as acting in the initiating role; o how a BEEP session is released; and, o how a BEEP session is terminated. 2.5.2 Message Exchange A BEEP session is message-oriented. A mapping document must define: o how messages are reliably sent and received; o how messages on the same channel are received in the same order as they were sent; and, o how messages on different channels are sent without ordering constraint. Rose Standards Track [Page 27] RFC 3080 The BEEP Core March 2001 2.6 Asynchrony BEEP accommodates asynchronous interactions, both within a single channel and between separate channels. This feature allows pipelining (intra-channel) and parallelism (inter-channel). 2.6.1 Within a Single Channel A BEEP peer acting in the client role may send multiple "MSG" messages on the same channel without waiting to receive the corresponding replies. This provides pipelining within a single channel. A BEEP peer acting in the server role must process all "MSG" messages for a given channel in the same order as they are received. As a consequence, the BEEP peer must generate replies in the same order as the corresponding "MSG" messages are received on a given channel. Note that in one-to-many exchanges (c.f., Section 2.1.1), the reply to the "MSG" message consists of zero or more "ANS" messages followed by a "NUL" message. In this style of exchange, the "ANS" messages comprising the reply may be interleaved. When the BEEP peer acting in the server role signifies the end of the reply by generating the "NUL" message, it may then process the next "MSG" message received for that channel. 2.6.2 Between Different Channels A BEEP peer acting in the client role may send multiple "MSG" messages on different channels without waiting to receive the corresponding replies. The channels operate independently, in parallel. A BEEP peer acting in the server role may process "MSG" messages received on different channels in any order it chooses. As a consequence, although the replies for a given channel appear to be generated in the same order in which the corresponding "MSG" messages are received, there is no ordering constraint for replies on different channels. Rose Standards Track [Page 28] RFC 3080 The BEEP Core March 2001 2.6.3 Pre-emptive Replies A BEEP peer acting in the server role may send a negative reply before it receives the final "MSG" frame of a message. If it does so, that BEEP peer is obliged to ignore any subsequent "MSG" frames for that message, up to and including the final "MSG" frame. If a BEEP peer acting in the client role receives a negative reply before it sends the final "MSG" frame for a message, then it is required to send a "MSG" frame with a continuation status of complete (".") and having a zero-length payload. 2.6.4 Interference If the processing of a particular message has sequencing impacts on other messages (either intra-channel or inter-channel), then the corresponding profile should define this behavior, e.g., a profile whose messages alter the underlying transport mapping. Rose Standards Track [Page 29] RFC 3080 The BEEP Core March 2001 2.7 Peer-to-Peer Behavior BEEP is peer-to-peer -- as such both peers must be prepared to receive all messages defined in this memo. Accordingly, an initiating BEEP peer capable of acting only in the client role must behave gracefully if it receives a "MSG" message. Accordingly, all profiles must provide an appropriate error message for replying to unexpected "MSG" messages. As a consequence of the peer-to-peer nature of BEEP, message numbers are unidirectionally-significant. That is, the message numbers in "MSG" messages sent by a BEEP peer acting in the initiating role are unrelated to the message numbers in "MSG" messages sent by a BEEP peer acting in the listening role. For example, these two messages I: MSG 0 1 . 52 120 I: Content-Type: application/beep+xml I: I: I: I: I: END L: MSG 0 1 . 221 116 L: Content-Type: application/beep+xml L: L: L: L: L: END refer to different messages sent on channel zero. Rose Standards Track [Page 30] RFC 3080 The BEEP Core March 2001 3. Transport Security When a BEEP session is established, plaintext transfer, without privacy, is provided. Accordingly, transport security in BEEP is achieved using an initial tuning profile. This document defines one profile: o the TLS transport security profile, based on TLS version one [3]. Other profiles may be defined and deployed on a bilateral basis. Note that because of their intimate relationship with the transport service, a given transport security profile tends to be relevant to a single transport mapping (c.f., Section 2.5). When a channel associated with transport security begins the underlying negotiation process, all channels (including channel zero) are closed on the BEEP session. Accordingly, upon completion of the negotiation process, regardless of its outcome, a new greeting is issued by both BEEP peers. (If the negotiation process fails, then either BEEP peer may instead terminate the session, and it is recommended that a diagnostic entry be logged.) A BEEP peer may choose to issue different greetings based on whether privacy is in use, e.g., L: I: L: RPY 0 0 . 0 110 L: Content-Type: application/beep+xml L: L: L: L: L: END I: RPY 0 0 . 0 52 I: Content-Type: application/beep+xml I: I: I: END I: MSG 0 1 . 52 158 I: Content-Type: application/beep+xml I: Rose Standards Track [Page 31] RFC 3080 The BEEP Core March 2001 I: I: I: ]]> I: I: I: END L: RPY 0 1 . 110 121 L: Content-Type: application/beep+xml L: L: L: ]]> L: L: END ... successful transport security negotiation ... L: RPY 0 0 . 0 221 L: Content-Type: application/beep+xml L: L: L: L: L: L: L: END I: RPY 0 0 . 0 52 I: Content-Type: application/beep+xml I: I: I: END Of course, not all BEEP peers need be as single-minded: L: I: L: RPY 0 0 . 0 268 L: Content-Type: application/beep+xml L: L: L: L: L: L: L: L: END I: RPY 0 0 . 0 52 I: Content-Type: application/beep+xml I: Rose Standards Track [Page 32] RFC 3080 The BEEP Core March 2001 I: I: END I: MSG 0 1 . 52 158 I: Content-Type: application/beep+xml I: I: I: I: ]]> I: I: I: END L: RPY 0 1 . 268 121 L: Content-Type: application/beep+xml L: L: L: ]]> L: L: END ... failed transport security negotiation ... L: RPY 0 0 . 0 268 L: Content-Type: application/beep+xml L: L: L: L: L: L: L: L: